Universidade Federal de Minas Gerais

Departamento de Engenharia Mecânica

Projeto de Aeronaves II - Aethron

Breno Britto de Melo Jonas Vieira de Andrade Junior Rubens Alves Freire Sammuel Henrique Ferreira Gomes Stefan D'Agostini Briquet Vladimir Brandi de Abreu Weiler Marcato

Prof: Paulo Iscold

Dezembro / 2006

SUMÁRIO

1	INT	RODUÇÃO	••••••	1
2	ESP	ECIFICAÇÕES E REQUISITOS		2
	2.1	DESEMPENHO ALMEJADO	2	
	2.2	MISSÃO TÍPICA	2	
	2.3	CARACTERÍSTICAS PRETENDIDAS	3	
	2.4	REQUISITOS	4	
3	LIST	TAS DE PRIORIDADES		5
4	EST	UDOS PRELIMINARES		7
	4.1	MÉTODOS COMPARATIVOS	7	
	4.1.1	Tabela comparativa	7	
	4.1.2	Fichas técnicas	25	
5	EST	IMATIVA DE PESO		66
6	GRÁ	FICOS DE W/P X W/S		77
	6.1	Velocidade de Estol	77	
	6.2	DISTÂNCIA DE DECOLAGEM	80	
	6.3	Distância de Pouso		
	6.4	RAZÃO DE SUBIDA		
	6.5	FAR 23.65 (AEO)		
	6.6	FAR 23.67 (OEI)		
	6.7	GRADIENTE DE SUBIDA	90	
	6.7.1	FAR 23.65 (AEO) – Gradiente de Subida	90	
	6.7.2	FAR 23.77 (AEO) – Arremetida		
	6.8	VELOCIDADE DE CRUZEIRO	93	
7	EST	UDO DAS PROPORÇÕES		96
8	DEF	INIÇÃO DA AERONAVE		101
	8.1	Configuração externa	101	
	8.1.1	Asas	101	
	8.1.2	Cauda	102	
	8.1.3	Trem de pouso	102	
	8.2	CONFIGURAÇÃO INTERNA	102	
	8.3	ESCOLHA DO GRUPO MOTO-PROPULSOR		

9 P	PERFIL	АGEM		107
9.1	DE	FERMINAÇÃO DO PERFIL DA ASA		
9.2	SUF	PERFÍCIE DE HIPER-SUSTENTAÇÃO		
9.3	DE	FERMINAÇÃO DO PERFIL DA EMPENAGEM	112	
10 R	REFINA	MENTO DE PESO		114
10.1	DEC	O DO ACADAMENTO INTERNO	115	
10.1	LES DEC	O DO ACABAMENTO INTERNO		
10.2	DEC	O DO SISTEMA DE AR CONDICIONADO E ANTI-GELO		
10.5		O DA EMPENACEM		
10.4		Base da empenagem hevizental		
1	0.4.1	Peso da empenagem norizonial		
10.5	0.4.2 DEC			
10.5	PES			
10.0	PES	O DA FUSELAGEM		
10.7	PES	O DO SISTEMA HIDRAULICO		
10.8	PES	O DOS CONTROLES		
10.9	PES	O DO MOTOR INSTALADO		
10.10	0 Pes	O DO SISTEMA ELETRICO		
10.1	1 Pes	O DO TREM DE POUSO		
10	0.11.1	Peso do trem principal		
10	0.11.2	Peso do trem do nariz	120	
10.12	2 Pes	O DO SISTEMA DE COMBUSTÍVEL		
10.1.	3 Res	SULTADO DOS PESOS		
11 P.	ASSEI	D DO C.G		123
12 E	VOLU	ÇÃO DOS DESENHOS		126
12.1	Pri	MEIRO DESENHO		
12.2	SEC	GUNDO DESENHO		
12.3	Tef	RCEIRO DESENHO		
12.4	QU	ARTO DESENHO		
12.5	QU	INTO DESENHO		
13 II	NSTRU	MENTAÇÃO UTILIZADA PARA VÔO E NAVEGAÇÃO		132
14 D	DESENH	IOS		137
141	Tní		127	
14.1		25 VISTAS		
14.2	DES	senho 3D		
15 R	RELATO	DRIO DESCRITIVO		139
15.1	TIP	0:		
15.2	VE	RSÕES:		
15.3	Asa	AS:		

15.4	FUSELAGEM:	139
15.5	CAUDA:	139
15.6	TRENS DE POUSO:	139
15.7	GRUPO MOTO PROPULSOR:	140
15.8	Acomodações:	140
15.9	Equipamentos:	140
15.10	CARACTERÍSTICAS TÉCNICAS:	140
16 CÁ	LCULOS AERODINÂMICOS	142
16.1	Levantamento de CL x α - Sustentação versus ângulo de ataque da aeronav	νE142
16.1	1.1 Determinação do Coeficiente de Sustentação da Fuselagem – Clf:	142
16.1	1.2 Determinação da variação do Coeficiente de Sustentação com o Ângulo de	Ataque
a=($dCl/D\alpha$)	144
16.1	.3 Determinação do ângulo de ataque de sustentação nula da asa em relação à	linha de
refe	rência da fuselagem - α_{0w} :	147
16	4 Determinação do coeficiente de sustentação ponderado dos perfis – CL perfil:	147
16	 Determinação do Coeficiente de Sustentação da Asa – Chy 	148
16	6 Determinação do Coeficiente de Sustentação Asa – Fuselavem - CLw-F	149
16	 Determinação do Coeficiente de Sustentação da Empenagem - CLE Determinação do Coeficiente de Sustentação da Empenagem - CLE 	150
16.1	 Determinação do ângulo local na empenagem- aE. 	152
16.1	9 Sustentação da Aeronave - CL	153
16.2	LEVANTAMENTO DE C _D X α -Arrasto versus ângulo de ataque da aeronave	
16.2	2.1 Arrasto da asa	154
16.2	2.2 Arrasto da empenagem	156
16.2	2.3 Arrasto da Fuselagem	158
16.2	2.4 Arrasto de interferência da asa-fuselagem	161
16.2	2.5 Arrasto de interferência da empenagem- fuselagem	162
16.2	2.6 Arrasto de devido a colete de ar	163
16.2	2.7 Arrasto total da aeronave	163
16.3	CARACTERÍSTICAS DE PLANEIO DA AERONAVE COM MOTORES EM MARCHA LENTA	164
16.4	RESULTADOS E ANÁLISES	166
17 CÁ	LCULO DE DESEMPENHO	
17.1	Cálculo da Potência Requerida (P _{reo}) ao nível do mar	170
17.2	Determinação da Razão de Avanço da Hélice– J:	172
17.2	2.1 Situação de potência máxima	172
17.2	2.2 Situação de potência de cruzeiro (75% Potência Máxima)	173
17.3	Determinação de " η_P " – Rendimento da Hélice	173
17.3	<i>Rendimento da hélice na condição de potência plena e potência de cruzeiro</i>	173
17.4	DETERMINAÇÃO DA POTÊNCIA DISPONÍVEL (P _{DIS})	175
17.4	1.1 Curvas de "potência x velocidade"	177

17.	4.2	Resultados obtidos	178
17.5	DE	FERMINAÇÃO DA RAZÃO DE SUBIDA ("R/S")	178
17.	5.1	Curvas de "razão de subida x velocidade"	180
17.	5.2	Resultados obtidos	180
17.6	DE	TERMINAÇÃO DE "E"- AUTONOMIA (<i>ENDURANCE</i>)	181
17.7	CÁ	LCULO DO ALCANCE – R (RANGE):	183
17.8	VE	LOCIDADE DE ESTOL	185
17.9	CÁ	LCULO DA DISTÂNCIA DA CORRIDA DE DECOLAGEM	186
17.	9.1	Cálculo da distância horizontal percorrida na rotação (SR)	187
17.	9.2	Cálculo da distância horizontal percorrida na subida (S _s)	187
17.	9.3	Cálculo da distância da corrida de pouso (Lg)	188
18 CÁ	LCUI	LO DE ESTABILIDADE E CONTROLE	
18.1	Est	ABILIDADE LONGITUDINAL ESTÁTICA	190
18.	1.1	Determinação da corda média aerodinâmica:	190
18.	1.2	Determinação do número de Reynolds médio da asa:	190
18.	1.3	Cálculo de $\frac{\partial C_L}{\partial \alpha}$	191
18.	1.4	Determinação do Centro Aerodinâmico da Asa h _{ow}	194
18.	1.5	Determinação do Coeficiente de Momento da Asa C_{mow} para $C_{Lw} = 0$	196
18.	1.6	Determinação da Curva de Sustentação do Conjunto Asa-Fuselagem - a _{wb}	198
18.	1.7	Determinação do Ângulo de Sustentação Nula do Conjunto Asa-Fuselagem – a_{ow}	_b 198
18.	1.8	Determinação de Downwash	199
18.	1.9	Inclinação da Curva de Sustentação Asa-Fuselagem	203
18.	1.10	Ângulo de Sustentação Nula do Conjunto Asa-Fuselagem	203
18.	1.11	Determinação do Incremento de C_{mo} devido à Fuselagem (C_{mo})b	204
18.	1.12	Determinação da Influência da Fuselagem ou Nacele no Ponto Neutro do Avião	206
18.	1.13	Determinação do Coeficiente de Sustentação $a_1 = \frac{\partial C_L}{\partial \alpha} da$ Empenagem Hor	rizontal
		208	
18.	1.14	Determinação da Variação da Sustentação da Empenagem Horizontal com a De	eflexão
do	Profur	$ndor \ dC_L/dh \ (a_2)$	211
18.	1.15	Determinação da Variação da Sustentação da Empenagem Horizontal com o Ang	gulo de
Dej	flexão	do Compensador ($\eta = 0$) a_3 :	213
18.	1.16	Determinação da Variação do Coeficiente de Momento de Articulação com o .	Angulo
de .	Ataque	$e dC_H/d\alpha (b_l)$	215
18.	1.17	Determinação da Variação do Coeficiente de Momento de Articulação com o .	Angulo
de	Deflex	$\tilde{a}o \ do \ Profundor \ b_2 = dC_H/d\eta \dots$	219
18.	1.18	Determinação da Variação do Coeficiente de Momento de Articulação com o .	Angulo
de	Deflex	$\tilde{a}o \ do \ Compensador \ b3 = dCH/d\beta$	223
18.	1.19	Cálculo dos Pontos Neutros e dos Pontos de Manobra	225

18.1	.20 Cálculo Das Curvas $\overline{\eta} X Cl$ (Deflexão Do Profundor Por Coe 231	eficiente De Sustentação)
18.1	.21 Cálculo das Curvas $\overline{P_e}$ x V (Força no Manche por Velocidado	e) para vôo Equilibrado.
	234	
18.1	.22 Cálculo Da Deflexão Do Manche Normalizada Pelo Acréscimo) De Fator De Carga (N-
<i>I)</i> –	Q1 236	
18.1	.23 Cálculo Da Força No Manche Normalizada Por " G " – Q_2	
18.1	.24 Análise do Passeio Estimado do Centro de Gravidade	
18.1	.25 Curva De $Pe+(\Delta Pe)_{\min} = Pe+(\Delta Pe)_{\max} Em Função L$	De $\bar{C_L}$ Para As Posição
mais	s Traseira Prevista Para o Cg	
18.1	.26 Conclusão	
18.2	Estabilidade Direcional Estática	
18.2	.1 Introdução	
18.2	.2 Cálculo das características e derivadas aerodinâmicas	
18.2	.3 Determinação da Variação do Coeficiente de Momento de Ar	rticulação com o Ângulo
de L	Deflexão do Compensador b $3 = dC_H/d\beta$	
18.2	.4 Cálculo das características de estabilidade e controle direciona	ais259
18.2	.5 Ângulo de flutuação do leme	
18.2	.6 Força no pedal para manter vôo glissado	
18.3	ESTABILIDADE LATERAL ESTATICA	
19 CAI	RGAS	
19.1	DIAGRAMA VN	
19.1	.1 Velocidades	
19.1	.2 Fatores de carga e de manobra	
19.1	.3 Curvas para coeficiente de sustentação máximos	
19.2	CARGAS NAS ASAS	272
19.3	Distribuição de Sustentação	
19.4	MANOBRAS SIMÉTRICAS	272
19.5	MANOBRAS ASSIMÉTRICAS	
19.6	MANOBRAS DE ROLAMENTO	
19.7	CARGAS DEVIDO AO USO DE FLAPES	
19.8	CARGAS DE TORÇÃO	
19.9	CARGAS NAS EMPENAGENS	
19.9	.1 Cargas na empenagem horizontal	
19.9	.2 Cargas de equilíbrio para vôo com fator de carga um	
19.9	.3 Cargas de equilíbrio para vôo com fator de carga limite	
19.9	.4 Acréscimo de cargas devido a manobras	
19.9	.5 Carga total na empenagem	

19.9	.6 (Carga devido à rajada na empenagem	
19.9	.7 (Cargas assimétricas	
19.9	.8 I	Distribuição de cargas na empenagem	
19.9	.9 E	Esforços na longarina	
19.9	.10 0	Cargas de apoio na empenagem	
19.10	CARGA	S NO TREM DE ATERRAGEM	
19.1	0.1 I	Fatores de carga para pouso	
19.1	0.2 0	Cargas no solo	
19.1	0.3 (Cargas no berço do motor	
19.11	CARGA	S NA FUSELAGEM	
19.1	1.1 C	Cargas na porção anterior da fuselagem	
19.1	1.2 0	Cargas verticais de inércia	
19.1	1.3 (Cargas transmitidas pelo trem de pouso auxiliar	
19.1	1.4 C	Cargas na porção posterior da fuselagem	
19.1	1.5 0	Cargas verticais de inércia	
19.12	CARGA	S NOS COMANDOS	
19.1	2.1 (Cargas no sistema de rolamento	
19.1	2.2 (Cargas no sistema de arfagem	
19.1	2.3 (Cargas no sistema de guinada	
20 REI	LATÓR	IO DESCRITIVO	
20.1	TIPO:		
20.2	Versõ	ES:	
20.3	Asas:.		
20.4	FUSEL	AGEM:	
20.5	CAUDA		
20.6	TRENS	DE POUSO:	
20.7	GRUPO	MOTO PROPULSOR:	
20.8	Асом	DDAÇÕES:	
20.9	EQUIPA	MENTOS:	
20.10	CARAC	TERÍSTICAS TÉCNICAS:	

Lista de Figuras

FIGURA 2.1: MISSÃO TÍPICA	2
FIGURA 6.1 - VELOCIDADE DE ESTOL DE POUSO	79
FIGURA 6.2 - VELOCIDADE DE ESTOL CRUZEIRO 25000 FT	80
Figura 6.3 - Distância de decolagem	81
Figura 6.4 - Distância de decolagem	
Figura 6.5 - Distância de pouso	83
Figura 6.6 - Distância de pouso 5000ft	85
FIGURA 6.7 - RAZÃO DE SUBIDA AEO	
FIGURA 6.8 - RAZÃO DE SUBIDA (OEI) A 5000FT	89
Figura 6.9 - Gradiente de subida	91
Figura 6.10 - Arremetida	93
Figura 6.11 - Velocidade de cruzeiro	94
FIGURA 6.12 - GRÁFICO W/P X W/S FINAL	95
FIGURA 7.1 - PROJEÇÕES DA EMPENAGEM V	99
Figura 8.1 - Vista em planta da asa	101
FIGURA 8.2 - ARRANJO INTERNO DA AERONAVE PARA AS VERSÕES DE 4 E 6 ASSENTOS	
FIGURA 8.3 - VISTA EM CORTE DA SEÇÃO DA AERONAVE	104
FIGURA 8.4 - ESTUDO DO POSICIONAMENTO DOS PILOTOS NO COCKPIT	105
Figura 8.5 - Vista frontal do motor	106
FIGURA 11.1 - PASSEIO DO C.G 4 LUGARES	125
FIGURA 11.2 - PASSEIO DO C.G 6 LUGARES	125
FIGURA 12.1 - PRIMEIRO DESENHO DA AERONAVE	126
FIGURA 12.2 - SEGUNDO DESENHO DA AERONAVE	127
FIGURA 12.3 - TERCEIRO DESENHO DA AERONAVE	129
FIGURA 12.4 - QUARTO DESENHO DA AERONAVE	130
FIGURA 12.5 - DESENHO FINAL DA AERONAVE	131
Figura 13.1 - GDU 1040	132
Figura 13.2 - GMA 1347	
Figura 13.3 - GIA 63	133
Figura 13.4 - GRS 77	133
Figura 13.5 - GDC 74A	
Figura 13.6 - GEA 71	134
Figura 13.7 – GTX 32 e GTX 33	134
Figura 13.8 - GMU 44	134
Figura 13.9 - Sistema esquematizado	
Figura 13.10 – Velocímetro	136
Figura 13.11 - Climb	136

Figura 13.12 - Altimetro	
FIGURA 16.1 - COEFICIENTE DE SUSTENTAÇÃO VERSUS ÂNGULO DE ATAQUE (°)	
FIGURA 16.2 - POLARES PRELIMINAR E ATUAL	
Figura 16.3 - Curvas C _L x alfa para condições de cruzeiro, decolagem e pouso	167
FIGURA 16.4 - CURVAS C _L x C _d para condições de cruzeiro, decolagem e pouso	
FIGURA 16.5 - CURVAS VVX V _H – POLAR DE VELOCIDADE	169
FIGURA 16.6 - CONTRIBUIÇÕES DE ARRASTO	
FIGURA 17.1 - CURVAS DE EFICIÊNCIA PARA HÉLICES TRI-PÁS	174
FIGURA 17.4 - GRÁFICO DA RAZÃO DE SUBIDA (MAX. CONT) X VELOCIDADE	
FIGURA 17.5 - GRÁFICO DA RAZÃO DE SUBIDA (75%) X VELOCIDADE	
FIGURA 17.6 - GRÁFICO DA AUTONOMIA EM FUNÇÃO DA VELOCIDADE PARA CRUZEIRO 75%	183
FIGURA 17.7 - GRÁFICO DO ALCANCE X VELOCIDADE	185
FIGURA 17.8 - DIAGRAMA ESQUEMÁTICO DA CORRIDA DE DECOLAGEM	186
FIGURA 17.9 - DIAGRAMA ESQUEMÁTICO DA CORRIDA DE POUSO	188
Figura 18.1 - Esquema da divisão da asa para cálculo do A_0 médio	192
FIGURA 18.2 ESQUEMA DA LINHA DE DOWNWASH	200
FIGURA 18.3 INTERPOLAÇÃO DE C/LB	207
Figura 18.4 Cl x h	233
FIGURA 18.5 – GRÁFICO DE VELOCIDADE X PESO	236
Figura 18.6 – Gráfico de C_L X força no Manche Normalizada	237
Figura 18.7 – Gráfico da Velocidade X Força no Manche Normalizada	239
Figura 18.8 – Passeio do CG	239
Figura 18.9 – Gráfico de Velocidade X Força mais variação da Força	241
Figura 18.10 – Força no pedal para diversos casos de vôo glissado	262
FIGURA 19.1 - DIAGRAMA VN DE MANOBRA E RAJADA	271
Figura 19.2 – Distribuição de C_L	272
FIGURA 19.3 – GRÁFICO PARA O CORTANTE	279
Figura 19.4 – Gráfico para o Fletor	279
Figura 19.5 – Esquema da empenagem	
Figura 19.6 – Esquema da empenagem	289
Figura 19.7 – Figuras do software VLM	292
Figura 19.8 – Esquema da empenagem	295
Figura 19.9 – Dimensões do avião	299
Figura 19.10 – Cargas no trem de pouso do avião	299
FIGURA 19.11 – CARGAS NO TREM DE POUSO PRINCIPAL	
FIGURA 19.12 – ATERRAGEM COM CAUDA BAIXA	301
FIGURA 19.13 – ATERRAGEM NUMA RODA PRINCIPAL	301
Figura 19.14 - Apêndice A do FAR 23	310
Figura 19.15 – Carga no aileron	311
Figura 19.16 - Apêndice C do FAR 23	312

FIGURA 19.17 – CARGA NA EMPENAGEM HORIZONTAL	
FIGURA 19.18 – CARGA NO BARICENTRO DA EMPENAGEM	
Figura 19.19 - Apêndice A do FAR23	
FIGURA 20.1 - VISTA ISOMÉTRICA DA AERONAVE – AETHRON	
FIGURA 20.2 - TRÊS VISTAS E VISTA ISOMÉTRICA DA AERONAVE – AETHRON	
FIGURA 20.3 - EMPENAGEM EM "V" E GRUPO MOTO-PROPULSOR COMPLETO	

Lista de Tabelas

TABELA 2.1 – MISSÃO TÍPICA	3
TABELA 3.1- LISTA DE PRIORIDADES	6
TABELA 4.1–TABELAS COMPARATIVAS	8
TABELA 4.2 - TABELAS COMPARATIVAS (CONTINUAÇÃO)	10
TABELA 4.3- TABELAS COMPARATIVAS (CONTINUAÇÃO)	12
TABELA 4.4 - TABELAS COMPARATIVAS (CONTINUAÇÃO)	14
TABELA 4.5 - TABELAS COMPARATIVAS (CONTINUAÇÃO)	16
TABELA 4.6 - TABELAS COMPARATIVAS (CONTINUAÇÃO)	
TABELA 4.7 - TABELAS COMPARATIVAS (CONTINUAÇÃO)	20
TABELA 4.8 - TABELAS COMPARATIVAS (CONTINUAÇÃO)	23
TABELA 5.1 - CONSTANTES A E B	66
TABELA 5.2 - CARGA PAGA	67
TABELA 5.3 – CARACTERÍSTICAS GEOMÉTRICAS E CÁLCULO DE F	70
TABELA 5.4 – CÁLCULO DE SWET E CDO	71
TABELA 5.5 - FRAÇÃO MÁSSICA DO CRUZEIRO 1	72
TABELA 5.6 - FRAÇÃO MÁSSICA DO CRUZEIRO 2	73
TABELA 5.7 - FRAÇÃO MÁSSICA DA ESPERA	74
TABELA 5.8 - FRAÇÃO MÁSSICA DA MISSÃO	74
TABELA 5.9 - COMPARAÇÃO DO PESO VAZIO CALCULADO COM O ESTIMADO	76
TABELA 5.10 - RESUMO DOS PESOS	76
Tabela 6.1 - Faixa de C_L	78
TABELA 6.2 - VELOCIDADE DE ESTOL	78
TABELA 6.3 - VELOCIDADE DE ESTOL CRUZEIRO 25000 FT	79
TABELA 6.4 - DISTÂNCIA DE DECOLAGEM STO (SEA LEVEL)	
TABELA 6.5 - DISTÂNCIA DE POUSO 5000FT	84
TABELA 6.6 - C _L x W/S	85
TABELA 6.7 - RAZÃO DE SUBIDA	
TABELA 6.8 - RAZÃO DE SUBIDA (AEO) 5000 FT	
TABELA 6.9 - RAZÃO DE SUBIDA OEI 5000FT	
TABELA 6.10 - GRADIENTE DE SUBIDA	91
TABELA 6.11 - ARREMETIDA	92
TABELA 6.12 - CRUZEIRO	94
TABELA 7.1 - TABELA DE PROPORÇÕES	97
TABELA 7.2 - TABELA DE PROPORÇÕES	97
TABELA 7.3 - RESULTADOS	
TABELA 9.1 - TABELA COMPARATIVA DOS PERFIS NACA	109
TABELA 9.2 - TABELA COMPARATIVA DOS PERFIS NASA LS	110
TABELA 9.3 - TABELA COMPARATIVA DOS PERFIS NASA NLF	110

TABELA 9.4 - TABELA COMPARATIVA DOS PERFIS PARA EMPENAGEM	112
TABELA 10.1 – PESO DA AVIÔNICA	
TABELA 10.2 - RESULTADO DO REFINAMENTO DE PESO	
TABELA 11.1 - DESCRIÇÃO DOS COMPONENETES	
TABELA 11.2 - PASSEIO DO C.G	
TABELA 15.1 - CARACTERÍSTICAS TÉCNICAS	140
TABELA 16.1 – PARÂMETROS DAS ESTAÇÕES	
TABELA 16.2 - VARIAÇÃO DE CLF COM O ÂNGULO DE ATAQUE	
TABELA 16.3 – INCLINAÇÃO DOS PERFIS	144
TABELA 16.4 - ESQUEMA DA DIVISÃO DA ASA PARA CÁLCULO DO AO MÉDIO	145
TABELA 16.5 - VARIAÇÃO DE CLPERFIL COM O ÂNGULO DE ATAQUE	147
TABELA 16.6 - VARIAÇÃO DE C_{Lasa} com o ângulo de ataque	149
TABELA 16.7 – VARIAÇÃO DE C_L ASA-FUSELAGEM COM O ÂNGULO DE ATAQUE	150
TABELA 16.8 – TABELA PARA O PERFIL NACA 0015	151
TABELA 16.9 – COEFICIENTE DE SUSTENTAÇÃO DA EMPENAGEM	151
TABELA 16.10 – TABELA DE DADOS DO PULLIN	152
TABELA 16.11 - COEFICIENTE DE SUSTENTAÇÃO DA EMPENAGEM	153
TABELA 16.12 - COEFICIENTE DE SUSTENTAÇÃO DA AERONAVE CL $_{\rm AER}$	153
TABELA 16.13 - CDE ASA	154
TABELA 16.14 - CDI ASA	156
TABELA 16.15 - CDEE EMPENAGEM	157
TABELA 16.16 - CDIE EMPENAGEM	158
TABELA 16.17 - CDIF	161
TABELA 16.18 – CDA-F	162
TABELA 16.19 - C _D AER	
TABELA 16.20 - EFICIÊNCIA E	164
TABELA 16.21 - POLAR DE VELOCIDADES	165
TABELA 17.1 – PARÂMETROS AERODINÂMICOS PARA O CÁLCULO DE DESEMPENHO	170
TABELA 17.2 – POTÊNCIA REQUERIDA	171
TABELA 17.3- TABELA COM VALORES DAS POTÊNCIAS	172
TABELA 17.4 – TABELA DE RENDIMENTOS PARA POTÊNCIA MÁXIMA	174
TABELA 17.5 - TABELA DE RENDIMENTOS PARA POTÊNCIA 75°	175
TABELA 17.6 - POTÊNCIA DISPONÍVEL E POTÊNCIA REQUERIDA	176
TABELA 17.7 - POTÊNCIA DISPONÍVEL (75%) E POTÊNCIA REQUERIDA	176
TABELA 17.8 - RAZÃO DE SUBIDA PARA POTÊNCIA MÁXIMA	179
TABELA 17.9 - RAZÃO DE SUBIDA PARA 75% DA POTÊNCIA MÁXIMA	179
TABELA 17.10 - AUTONOMIA DA AERONAVE (MÁX. CONTÍNUA)	
TABELA 17.11 - AUTONOMIA DA AERONAVE	
TABELA 17.12 - ALCANCE DA AERONAVE (MAX. CONT)	184
TABELA 17.13 - ALCANCE DA AERONAVE (75%)	

TABELA 18.1 - CARACTERÍSTICA DOS PERFIS DA ASA	191
TABELA 18.2 – CÁLCULO DE A ₀ MÉDIO	
TABELA 18.3 – INTERPOLAÇÃO PARA CÁLCULO DE Α COM Λ=0,6	
TABELA 18.4 – INTERPOLAÇÃO PARA CÁLCULO DE Α COM Λ=0,8	
TABELA 18.5 – Alongamento para λ=0,7	
TABELA 18.6 – VALORES DE K1 E K2 INTERPOLADOS	
TABELA 18.7 – VALORES DE INTERPOLAÇÃO DE A	
TABELA 18.8 – VALORES DE INTERPOLAÇÃO DE X/S PARA A=9 e Λ =1	
TABELA 18.9 – VALORES DE INTERPOLAÇÃO DE X/S PARA A=12 e Λ =1	
TABELA 18.10 – VALORES DE INTERPOLAÇÃO DE X/S PARA Λ =0,5 e A=9	
TABELA 18.11 – VALORES DE INTERPOLAÇÃO DE X/S PARA Λ =0,5 e A=12	
TABELA 18.12 – VALORES DE INTERPOLAÇÃO DE A PARA A =1	
TABELA 18.13 – VALORES DE INTERPOLAÇÃO DE A PARA A =0,5	
TABELA 18.14 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.15 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.16 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.17 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.18 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.19 – VALORES PARA A INTERPOLAÇÃO.	210
TABELA 18.20 – VALORES PARA A INTERPOLAÇÃO.	210
TABELA 18.21 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.22 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.23 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.24 – VALORES PARA A INTERPOLAÇÃO	214
TABELA 18.25 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.26 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.27 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.28 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.29 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.30 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.31 – VALORES PARA A INTERPOLAÇÃO.	
TABELA 18.32 – PARÂMETROS DA AERONAVE	
TABELA 18.33 – DADOS DO PERFIL NACA 0015	
TABELA 18.34 – INTERPOLAÇÃO PARA CÁLCULO DE A1	247
TABELA 18.35 – INTERPOLAÇÃO PARA CÁLCULO DE $(A_2)_0$	
TABELA 18.36 – INTERPOLAÇÃO PARA CÁCULO DE $(A_3)_{0T}$	250
TABELA 18.37 INTERPOLAÇÃO PARA CÁLCULO DE $(A_3)_0$	250
TABELA 18.38 – INTERPOLAÇÃO PARA CÁLCULO DE A3*	251
TABELA 18.39 INTERPOLAÇÃO PARA CÁLCULO DE $(B_1)_0^*$	252
TABELA 18.40 – INTERPOLAÇÃO PARA CÁLCULO DE (B ₂) ₀	

TABELA 18.41 – INTERPOLAÇÃO PARA CÁLCULO DE $\left(\frac{\alpha_1}{\delta}\right) \cdot \frac{(a_2)}{(a_2)_o}$	256
Tabela 18.42 – interpolação para cálculo de $\Delta(b_2)$	
TABELA 18.43 – INTERPOLAÇÃO PARA CÁLCULO DE Y	
TABELA 18.44- RESUMO DE RESULTADOS	
TABELA 19.1 - FATORES DE CARGAS DE RAJADA	270
TABELA 19.2 - CÁLCULO DO CORTANTE E FLETOR DA ASA	273
TABELA 19.3 - CÁLCULO DO CORTANTE E FLETOR DA ASA PARA MANOBRAS ASSIMÉTRICAS	274
TABELA 19.4 - CÁLCULO DO CORTANTE E FLETOR NO AILERON	275
TABELA 19.5 - CÁLCULO DO CORTANTE E FLETOR RESULTANTE	276
TABELA 19.6 - CÁLCULO DO CORTANTE E FLETOR NO FLAP	277
TABELA 19.7 - CÁLCULO DO CORTANTE E FLETOR RESULTANTE	278
TABELA 19.8 - CÁLCULO DA TORÇÃO DA ASA	
TABELA 19.9 - CARGAS NA EMPENAGEM SOB FATOR DE CARGA UM	
TABELA 19.10 - CARGAS NA EMPENAGEM COM FATOR DE CARGA LIMITE	
TABELA 19.11 - ACRÉSCIMO DE CARGA NA EMPENAGEM	
TABELA 19.12 - CARGA TOTAL NA EMPENAGEM	
TABELA 19.13 - CARGA TOTAL NA EMPENAGEM	
TABELA 19.14 - ACRÉSCIMO DEVIDO A RAJADA NA EMPENAGEM	
TABELA 19.15 - CARGA DEVIDO A RAJADA NA EMPENAGEM	
TABELA 19.16 - CARGA DEVIDO A RAJADA NA EMPENAGEM	
TABELA 19.17 - FORÇA NA EMPENAGEM	291
TABELA 19.18 - CORTANTE E FLETOR NA EMPENAGEM	
TABELA 19.19 - TORÇÃO NA EMPENAGEM	297
TABELA 19.20 - CARGAS DE INÉRCI	
TABELA 19.21 - CARGAS DE INÉRCIA	
TABELA 20.1 - CARACTERÍSTICAS TÉCNICAS	

1 Introdução

O presente trabalho tem como objetivo descrever o projeto preliminar de uma aeronave utilitária (commuter) desenvolvido no período de Março a Junho de 2006 como trabalho prático da disciplina " Projetos de Aeronaves 1" do curso de engenharia mecânica (Trajetória Aeronáutica) da Universidade Federal de Minas Gerais.

A aeronave a ser desenvolvida deve servir como opção atualizada, buscando a substituição das aeronaves ultrapassadas de mesma categoria como os antigos Piper, Cessnas e Bechcrafts de 6 e 4 lugares. O projeto em questão será o desenvolvimento de uma aeronave para ser introduzida neste mercado. Para tal, utilizar-se-á tecnologias de ponta para a sua construção (titânium, materiais compostos, glare e suas combinações). Além disso possuirá aerodinâmica refinada, alto grau de automação e fará uso de tecnologias modernas na sua propulsão (motores a ciclo diesel), com solução que elimine problemas de assimetria em caso de perda de um dos motores.

2 ESPECIFICAÇÕES E REQUISITOS

Propõe-se o desenvolvimento de uma aeronave da categoria commuter, bimotora, de 4 ou 6 lugares, pressurizada, capaz de operar em pistas curtas e precárias, destinado ao transporte executivo que atenda às normas do DAC e do FAA. Os seguintes itens serão subdivididos para análise:

- 1) Desempenho almejado
- 2) Missão típica
- 3) Características pretendidas
- 4) Requisitos

2.1 Desempenho almejado

A aeronave deverá atender os seguintes parâmetros de desempenho:

- Velocidade de cruzeiro a 75% da potência igual a 450km/h
- Alcance de translado 3000km
- Altitude máxima de operação de 25000ft

2.2 Missão típica

A aeronave terá que atender à seguinte missão típica:

Figura 2.1: Missão Típica

		TEMPO (min)	ALTITUDE (ft)
1	Warm-up, taxi e decolagem.	20	
2	Subida 1		10 000
3	Cruzeiro 1	10	
4	Subida 2		25 000
5	Cruzeiro 2	240	
6	Descida 1		10 000
7	Espera	30	
8	Descida 2		
9	Aproximação	20	
10	Taxi	10	

Tabela 2.1 – Missão Típica

2.3 Características Pretendidas

As características da aeronave são:

- "Design" moderno
- Acabamento refinado
- Aviônica de última geração
- Possibilidade de pouso em pistas curtas e precárias
- Conceito de "Safety Assesment" principalmente relacionado à solução que elimine problemas de assimetria em caso de perda de um dos motores.

2.4 Requisitos

A aeronave deverá atender ao requisito de homologação FAR part 23. Além disso deverá possuir os equipamentos mínimos para homologação:

- VFR

- IFR

3 LISTAS DE PRIORIDADES

No projeto surgem parâmetros antagônicos entre os quais se deve priorizar um em detrimento de outro(s). Para facilitar a escolha de projeto e deixar explícitas as características mais desejáveis, torna-se necessário estabelecer uma lista de prioridades. Foram observadas quais as características eram mais importantes para classificar a aeronave como uma opção de mercado e que a faça atraente principalmente do ponto de vista de um "Air Táxi".

De forma a suprir estas características, a ergonomia se destaca como prioridade número um, uma vez que o público alvo demanda um nível de conforto acentuado. Em segundo lugar a aeronave deve preservar a vida dos seus ocupantes em caso de acidentes e diminuir ao máximo a probabilidade de ocorrer um eventual incidente.

Como terceira prioridade, o avião deve possuir um design arrojado de forma a atrair os clientes e introduzir um aspecto moderno em relação aos seus concorrentes. A estética desempenha um papel importante na hora da escolha da aeronave.

Como quarta prioridade, com a finalidade de se reduzir o tempo ocioso devido à manutenção, considerou-se a mantenabilidade como um item importante, uma vez que é oneroso manter uma aeronave fora de operação, além de trazer aborrecimentos por tempo perdido.

O custo de operação é um aspecto relevante sendo classificado como quinta prioridade. Há uma exigência por parte dos clientes em usufruir da aeronave com o menor gasto possível. Este também é um dos aspectos determinantes na competitividade do avião.

A facilidade na construção diminui o custo final de aquisição, por isso se classificando em sexto lugar.

A segurança operacional não é um item crucial, visto que apenas pilotos experientes operarão este tipo de aeronave. Por isso, apenas o mínimo necessário será oferecido, se classificando como oitava prioridade.

O desempenho é colocado como uma condição a ser atendida impreterivelmente. Desta forma não cumpre um papel importante na tomada das decisões, se classificando como nona prioridade.

Por ser um avião de passageiro, a manobrabilidade fica em último lugar, por ter missão de translado, não exigindo movimentos abruptos.

O projeto da aeronave seguirá a seguinte ordem de prioridades conforme lista abaixo:

1- Ergonomia	Conforto para o passageiro em todos os aspectos. Assentos, temperatura, pressão etc.						
2- Segurança Estrutural	"Crashworthness", "failsafe" e " Safety Assessment".						
3- Estética	Design moderno e atrativo						
4- Facilidade de Manutenção	Facilidade na aquisição de peças, acessibilidade aos sistemas, montagem.						
5- Custo Operacional	Baixo consumo, baixo custo de manutenção.						
6- Facilidade Construtiva	Menor complexidade nos perfis, ferragens idênticas, processo de fabricação mais simples.						
7- Custo de Fabricação	Utilizar peças mais acessíveis no mercado, materiais mais baratos.						
8- Segurança Operacional	Estol suave, baixa velocidade de estol, utilização de trem de pouso triciclo.						
9- Desempenho	Alta razão de subida, velocidade máxima, alto teto de serviço.						
10- Manobrabilidade	Alta razão de arfagem, rolamento etc.						

Tabela 3.1- Lista de Prioridades

4 ESTUDOS PRELIMINARES

4.1 Métodos comparativos

Os métodos comparativos são um conjunto de informações visando a orientação na concepção da aeronave. Apresenta-se a seguir quatro grupos que definem os métodos comparativos a saber:

4.1.1 Tabela comparativa

É usual estabelecer a elaboração de uma ou mais tabelas (tabelas comparativas) nas quais comparecem aeronaves a serem analisadas e suas características básicas, como: dimensões, áreas, pesos, dados de desempenho, perfis utilizados, potência e tipos de motores etc.

As tabelas comparativas são muito valiosas para o projeto, pois visam o estabelecimento dos parâmetros básicos da nova aeronave, via comparação, análise de tendências, interpolação ou extrapolação.

Abaixo segue uma listagem de aviões que se assemelham com o avião em projeto.

TABELAS COMPARATIVAS									
	Aero	onave		Asa	Trem	Сар	acidade		
N°	Fabricante	Modelo	Posição	Forma em Planta	de Pouso	Assentos	Passageiros		
1	Embraer	EMB 110 Bandeirante	Baixa	Trapeizodal	Triciclo				
2	Embraer	EMB 121 Xingu	Baixa	Trapeizodal	Triciclo				
3	Let	410A	Alta	Trapeizodal	Triciclo				
4	Mitsubishi	UM-2L	Alta	Trapeizodal	Triciclo				
5	Scottish Aviation	Jetstream Srs 200	Baixa	Trapeizodal	Triciclo				
6	Piper	(PA-42-1000) Cheyenne 400			Triciclo	10	8		
7	Beechcraft	King Air C90A	Baixa	Retangular Trapeizodal	Triciclo	6	4		
8	Beechcraft	Super King Air B200	Baixa	Retangular Trapeizodal	Triciclo	8	6		
9	BAe	Jetstream 31	Baixa	Trapeizodal	Triciclo	12	10		
10	Partenavia	AP 68TP-600 Viator	Alta	Retangular	Triciclo	10	9		
11	Piaggio	P180 Avanti	Média	Trapeizodal	Triciclo	7	5		
12	Reims Aviation	Cessna F406 Caravan II	Baixa	Retangular Trapeizodal	Triciclo	14	12		
13	Partenavia	P68C	Alta	Retangular	Triciclo	6	4		
14	Beechcraft	Duke B60	Baixa	Bi Trapeizodal	Triciclo				

15	Beechcraft	B99 Airliner	Baixa	ixa Tri Trapeizodal			
16	HPA	TT62 Alekto	Média		Triciclo	5	4
17	Cessna	414	Baixa	Retangular Trapeizodal	Triciclo		
18	Cessna	421C II	Baixa	Retangular Trapeizodal	Triciclo		
19	Dominion	Skytrader 800 STOL	Alta	Retangular	Triciclo		
20	McKinnon	G-21G Turbo- Goose	Alta	Trapeizodal	Triciclo	12	10
21	Piper	PA-31P Navajo	Baixa	Bi Trapeizodal	Triciclo		
22	Piper	PA-31-350 Navajo	Baixa	Bi Trapeizodal	Triciclo	8	6
23	Piper	PA-31T Cheyenne	Baixa	Bi Trapeizodal	Bi peizodal		6
24	Beechcraft	Starship Series 200	Baixa	Bi Trapeizodal	Triciclo	8 a 11	6 a 9
25	Rockwell International	Commander 690A	Alta	Trapeizodal	Triciclo	7 a 12	6 a 11
26	Boeing Canada	DHC-6 Twin Otter Series 300	Alta Retangular Trie		Triciclo	20	18
27	НАМС	HAMCY12 II STOL	Alta	Retangular	Triciclo	19	17
28	LET	L-610	Alta	Trapeizodal	Triciclo	43	40
29	Dornier	228-101			Triciclo	17	15
30	Pilatus Britten- Norman	BN-2T	Alta	Retangular	Triciclo	6	3

31	VulcanAir	VA 300	Alta	Retangular	Triciclo	10	8
32	ZRIPSL	EM-11 ORKA	Alta		Triciclo	4	3
33	Cessna	441 Conquest	Baixa	Retangular Trapeizodal Triciclo			
34	Fairchild	Merlin 300	Baixa	Trapeizodal	Triciclo	10	8
35	Beechcraft	Baron 58 P	Baixa	Trapeizodal	Triciclo		
36	Socata	TB-360 Tangara			Triciclo		
37	Adam	Adam 500	Baixa		Triciclo	6	5
38	Angel	Angel 44	Baixa		Triciclo	6	4
39	Diamond	DA 42 Twin	Baixa		Triciclo	4	2
40	Piper	Sêneca V	Baixa	Retangular	Triciclo	7	5

Tabela 4.2 - Tabelas Comparativas (continuação)

	Dimensões Externas											
N°	Envergadura	Comprimento Total	Altura Total	Envergadura da Largura da Empenagem Fuselagem Horizontal		Comprimento da Fuselagem	Distentre Rodas e o Trem Principal	Dist entre o Trem e a Triquilha				
	m	m	m	m	m	m	m	М				
1	15,32	14,23	4,13	7,54	1,7	13,74	4,94	4,56				
2	14,4	12,32	4,94	5,58	1,86	11,01	5,24	2,86				
3	17,48	13,61	5,65	6,67		12,89						
4	11,49	12,01	4,17	4,8		11,84	2,41	4,39				
5	15,85	14,37	5,32	6,6	1,98	13,84	5,94	4,60				
6	14,53	13,23	5	6,65								
7	15,32	10,82	4,34	5,26			3,89	3,73				

8	16,61	13,34	4,57	5,61			5,23	4,56
9	15,85	14,37	5,32	6,6	1,98	13,4	5,94	4,6
10	12	10,85	3,64	4,01	1,2	9,66	2,167	3,51
11	13,84	14,17	3,9				2,84	5,79
12	15,08	11,89	4,01	5,87			4,28	3,81
13	12	9,55	3,4	3,9			2,4	3,5
14	11,97	10,31	3,76	5,18			3,36	2,81
15	14	13,58	4,38	6,82			3,96	5,48
16	11,24	11,52	3,71	4,46	1,55	10,5		
17	12,17	10,29	3,55	5,18			4,48	3,19
18	12,53	11,09	3,49	5,18				
19	15,49	12,07		6,02				
20	16,76	12,5	5,76				2,76	1,68
21		10,52	3,99	6,05				
22	12,4	10,55	3,96	5,52				
23	13,01	10,57	3,89	6,05				
24	16,6	14,05	3,68		1,78	13,67		
25	14,22	13,52	4,56	6,03			4,7	5,38
26	19,81	15,77	5,94	6,3			3,71	4,53
27	17,235	14,86	5,575				3,6	4,698
28	25,6	21,419	7,608	7,908	2,7	20,533	4,59	6,596
29	16,97	15,04	4,86	6,45			3,3	5,53
30	14,94	10,86	4,18	4,67	1,21		3,61	3,99
31	12	10,18	3,63	4,01			2,37	3,17

32	13,5	8,65	2,62	3,7	1,3	2,42	3,38
33	14,12	11,89	3,99	5,81			
34	16,6	12,85	5,13	4,86			
35	11,53	9,09	2,79	4,85		2,92	2,72
36	11,23	9,09	3,16	4,24		3,30	1,85
37	13,41	11,18	2,9			3,57	3,08
38	12,16	10,21	3,51	5,30		3,95	4,67
39	13,42	8,5	2,60				
40	11,85	8,72	3,02	4,14		3,38	2,13

	Áreas										
Nº	Alar	Ailerons	Flaps	Leme	Profundor	Empenagem Vertical	Empenagem Horizontal				
	M ²	m²	m ²	m²	m²	m²	m ²				
1	29	2,18	5,04	1,68	4,4	2,07	5,43				
2	27,50	1,42	5,04	1,78	2,51	2,18	3,33				
3	32,86	2.248	5,92	2,78	2,96		6,6				
4	16,55		3,9	1,17	1,39	2,85	4,02				
5	25,08	1,52	3,25			7,72	7,8				
6	27,22	1,25	3,98	1,6	2,26	2,68	3,48				
7	27,31	1,29	2,72	1,3	1,66	2,2	4,39				
8	28,15	1,67	4,17	1,4	1,79	3,46	4,52				
9	25,2	1,52	3,25			7,72	7,8				
10	18,6	1,76	2,42	1,64	1,3	2,9	3,76				
11	15,76	0,66	1,6	1,05	1,35	3,68	2,485				

12	23,5						
13	18,6	1,79	2,37	0,44		1,59	4,41
14	19,78	1,06	2,76	1,15	1,52	1,52	4,24
15							
16	14,03	0,67	2,16	0,60	1,14	2,40	2,66
17	18,18	1,06	2,13	1,65	1,64	3,52	5,64
18	19,97						
19	34,44	2,75		2,49	4,185	1,97	3,67
20	35,77	3,06	5,34	2,01	4,31	2,72	
21							
22	21,3						
23	21,3	1,21	3,12	0,98	2,63	1,48	6,55
24	26,09		4,78	1,04	1,01	4,92	5,67
25	24,7	1,83	1,65	1,92	1,91	2,25	3,51
26							
27	34,27					5,064	7,024
28	56	3,27	11,29	5,54	5,82	8,3	7,68
29	32	2,708		1,5			
30	30,19	2,38	3,62	1,6	3,08	3,41	6,78
31	18,60						
32	16,65						
33	22,48					4,05	5,89
34	25,78						
35	17,48	1,08	1,98	0,81	1,65	1,46	5,11

36	17,09					1,86	4,46
37	15,33						
38	20,94	0,39	4,05	1,41	2,76		6,23
39	16,46						
40	19,39	1,17	1,94	0,71		1,14	3,60

	Características da Asa											
N°	Corda na Ponta	Corda Média	Corda na Raiz	Perfil na Raiz	Perfil na Ponta	Diedro	Incidência na Ponta	Incidência na Raiz	Alongamento			
	М	m	m			0	o	o				
1	1,35		2,32	NACA 23016	NACA 23012	7	3	3				
2	1,50		2,46						7,15			
3	1.267		2.534	NACA 63A418	NACA 63A412	1° 45′	2	0° 30′	9,3			
4		1,54		NACA 64A415	NACA 63A212	0	2	2	7,71			
5	0,8		2,19	NACA 63A418	NACA 63A412	7	2	0	10			
6	0,97		3,12	NACA 63A415	NACA 63A212	5	1° 30`	1° 30`	7,8			
7	1,07		2,15						8,6			
8	0,9		2,18	NACA 23018.5	NACA 23011.3	6	3°48'	1°7	9,8			
9	0,8		2,19	NACA 63A418	NACA 63A412	7	2	0	10			

10		1,55							7,7
11	0,63		1,79	Piaggio PE 1491 G	Piaggio PE 1332 G	2	0	0	11,8
12				NACA 23018	NACA 23012	3°30'	2	1	9,7
13		1,55							7,7
14	0,9		2,8	NACA 23016.5	NACA 23010.5	6	4	0	7,243
15	1,07		2,15	NACA 23018	NACA 23012	7	0	4°48'	
16	0,80		1,75	LS(1)- 0413	LS(1)- 0413	4°30'	1	1	9
17	1,16		1,71	NACA 23018	NACA 23009	5		2	7,5
18	1,14		1,77						
19	1,52		3,05						
20									
21									
22									
23				NACA 63 ₂ 415	NACA 63A212	5	1°30′	1°(-)	
24						1°18'36"	2°		
25	0,84		2,64						8,19
26	1,98	1,98	1,98						10,1
27	2	2	2	LS(1)- 0417	LS(1)- 0417		4°	4°	8,7
28	1,458		2,917	MS(1)- 0318D	MS(1)- 0312	2°	3°8'38,4"	0°	11,7

29						0			
30		2,03		NACA 23012	NACA 23012	0	2	2	
31	1,55	1,55	1,55	NACA 63-3515	NACA 63-3515	1°	1°3'	1°3'	7,7
32									10,9
33	1,23		1,78		NACA 23012	3°30′	2	1°(-)	
34		1,94							7,7
35	0,9		2,24						7,59
36		1,45							7,4
37									10,9
38	1		2,59	NACA 23018- 23010	NACA 23018- 23010	5°24'	-0°22'	3°	7,06
39									10,9
40		1,60		NACA 65 ₂ -415	NACA 65 ₂ -415	7°			7,3

Tabela 4.5 - Tabelas Comparativas (continuação)

	Desempenho												
N°	Vel. Máx. Cruzeiro	Vel. Nunca Excedida	Vel. Econômica de Cruzeiro	Vel. Stall c/ Flaps	Vel. Stall. s/ Flaps	Alcance	T-O Run	Landing Run					
	km/h	km/h	km/h	km/h	km/h	km	m	М					
1	422	558	356	132		2220	380	350					
2	467	586	389			2595	520	315					
3	370	400	360	118	152	1300	496	273					

4	547		483	142	185	2334	661	573
5	422	555	433	141		2224	579	702
6	650			156	172	2304	709	621
7	450			144	163	2366	574	316
8	536	480	523	139	183	3658	566	536
9	488		426	159				
10	408		315	130	151	1594	275	250
11	740		593	152	185	3335		
12	455		370	150	174	2135	526	674
13	307			106	120	2242	230	215
14	447	490	438	135	150,5	1862	611	402
15	459					1339	506	851
16	444		333			1800		
17	438		352			2409	517	245
18	475					2755	544	219
19	391					2575		
20	338					3940	119	95
21	451		357	148	134	2414	439	823
22	435		396	137	148	1706	759	480
23	525		393	142		2739	604	567
24	626		500	156	183	3691	392	658
25	518		465	143,5	152	2705	437	275
26	338			108	138	1297	213	290
27	292	328				1340	340	200

28	490	400	250	139	172	2406	370	340
29	428	472		117	146	1343	411	600
30	280	339		74	92	1965	496	299
31	352			124		3080	394	650
32	320		230	90		1500		
33	519					2704	748	739
34	555	490	202	169	193	4284	890	855
35	363	436	311	141		2086	504	448
36	306			117	132	2111	305	216
37	463		370		130	2722		
38	333	387	313	95	106	3185	201	173
39	376					2750	290	
40	372			113		1529	349	427

Tabela 4.6 - Tabelas Comparativas (continuação)

		Dese	mpenho			Dimens	ões Intern	as
N°	Razão de Subida	Razão de Subida c/ Um Motor	Teto de Serviço	Teto de Serviço c/ Um Motor	Relação Peso / Potência	Comprimento da Cabine	Largura da Cabine	Altura da Cabine
	ft/min	ft/min	ft	ft	kg/kW	m	m	М
1	1700	300	26250	8000	5,52	8,65	1,6	1,6
2	1900	541	27000	13000	5,52	5,18	1,74	1,52
3	1615	315	23300	9175	5,35	6,25	1,92	1.658
4	2630	675	29600	15450	4,54	5,99	1,5	1,3
5	2500	600	25000	10000	3,84	7,32	1,85	1,8
6	3242	997	41000	28000	4,73	6,69	1,3	1,42

7	2003	554	28900	14260	5,59	3,86	1,37	1,45
8	2450	740	35000	21900	4,47	6,71	1,37	1,45
9	2080	390	25000	12000	4,96	7,39	1,85	1,8
10	1932	430	25000	11000	5,83	3,6	1,12	4
11	3650	1250	41000	32000	4	6	1,83	1,75
12	1850	397	30000	16200		5,71	1,42	1,31
13	1500	270	19200	6900	6,68	3,58	1,16	1,2
14	1601	307	30000	15100	5,43	3,61	1,27	1,32
15	2090	561	26313	13000	4,88	7,72	1,40	1,45
16	1800					4,80	1,40	
17	1580	240	30100	11350	6,23	4,42	1,40	1,29
18	1940	350	30200	14900	6,03			
19	1750		20000	12000				
20	1600	420	17500	7000	6,47	5,18	1,27	1,65
21	1740	240	29000	15300	5,58	4,90	1,32	1,30
22	1390	230	27200	13700	6,08	5,49		1,31
23	2800	660	29000	14600		4,9	1,3	1,32
24	3380	1030	41000	23100				
25	2849	893	33000	19700	4,54			
26	1600	340	26700	11600		5,64	1,61	1,5
27	1655	331	22960	9840	5,23		1,46	1,7
28	1870	492	33630	13060	5,147	11,1	2,02	1,825
29	2025	531	29600	14000				
30	1130	200	17200	6500				

31	1516	335			6,37	2,92	1,32	1,27
32	787				9,35			
33	2405	700	33200	18350		5,71	1,4	1,29
34	2600	750	31000	15800		3,23	1,57	1,45
35	1424	205	25000	13220	6,03	3,84	1,07	1,27
36	1400	310	20000	5500	6,42	2,90	1,14	1,25
37	1800	400	25000	15000	5,48	4,15	1,37	1,29
38	1345	196	20560	5180	5,87	3,51	1,07	1,14
39	1730		18000		8,20			
40	1462	250	25000	16500	6,57	3,15	1,24	1,07

Tabela 4.7 - Tabelas Comparativas (continuação)

Grupo Moto Propulsor								
N°	Nº de Motores	Potência Individual	Fabricante e Modelo do Motor	Tipo	Nº de Hélices	Modelo da Hélice	Diâmetro das Hélices	Dist Entre Motores
		kW (hp)					m	М
1	2	507 (680 shp)	Pratt & Whitney PT6A- 27	Turbohélice	3	Hartzell HC- B3TN-3C	2,36	4,80
2	2	507 (680 shp)	Pratt & Whitney PT6A- 28	Turbohélice	3	Hartzell	2,36	5,10
3	2	507 (680 shp)	Pratt & Whitney PT6A- 27	Turbohélice			2,49	4,82
4	2	540 (724 shp)	AIResearch TPE 331-6- 251M	Turbohélice	3	Hartzell	2,29	4,50

5	2	743 (996 shp)	Turboméca Astazou XVIC2	Turbohélice	3	Hamilton Standart	2,59	
6	2	746 (1000 shp)	Garret TPE331- 14A/14B	Turbohélice	4	Dowty Rotor ARA-D	2,69	
7	2	410 (550 shp)	Pratt & Whitney PT6A- 21	Turbohélice	3	Hartzell	2,36	
8	2	634 (850 shp)	Pratt & Whitney PT6A- 42	Turbohélice	3	Hartzell	2,5	5,23
9	2	701 (940 shp)	Garret TPE331- 10UG	Turbohélice	4	Dowty Rotol	2,69	
10	2	244,5 (328 shp)	Allison 250- B17C	Turbohélice	3	Hartzell HC- B3TF-7A	2,03	4,03
11	2	634 (850 sph)	Pratt & Whitney PT6A- 66	Turbohélice	5	Hartzell	2,16	4,13
12	2	373 (500shp)	Pratt & Whitney PT6A- 112	Turbohélice	3	McCauley 3GFR34C701	2,36	
13	2	149 (200 hp)	Lycoming IO- 360-A1B6	Pistão	2	Hartzell HC-C2Y K-2C	1,88	4,1
14	2	283	Lycoming TIO 541-E1C4	Pistão	3	Hartzell	1,88	
15	2	507 (680 ehp)	Pratt & Whitney PT6A- 28	Turbohélice	3	Hartzell	2,37	
16	2	228 (306 hp)	TAE Centurion 4.0 V-8	Pistão	5	MT-Propeller MTV-25-1- DCF/CF175-512	1,75	
17	2	231 (310 hp)	Continental TSIO-520-M	Pistão	3	McCauley	1,94	
18	2	280 (375	Continental	Pistão	3	McCauley		

		shp)	GTSIO-520-L					
19	2	335,5 (450 hp)	Pratt & Whitney PT6A- 27	Turbohélice	3			
20	2	354 (475 hp)	Lycoming TIO- 720-C	Pistão	3			
21	2	317 (425 hp)	Lycoming TIGO-540-E1A	Pistão	3	Hartzell	2,36	
22	2	261 (350 hp)	Lycoming TIO- 540-J2BD	Pistão	3		2,03	
23	2	462 (620 ehp)	Pratt & Whitney PT6A- 28	Turbohélice	3	Hartzell HC- BTN-3B	2,36	
24	2	895	Pratt & Whitney PT6A- 67	Turbohélice	5	Hartzell	2,54	
25	2	522	AiResearch TPE 331-5- 251K	Turbohélice	3	Hartzell HC- B3TN-5FL/LT 10282H + 4	2,69	
26	2	462 (620 shp)	Pratt & Whitney PT6A- 27	Turbohélice	3	Hartzell HC- B3TN-3DY	2,59	
27	2	507	Pratt & Whitney Canada PT6A- 27	Turbohélice	3	Hartzell HC- B3TN- 3B/T10173B-3	2,49	4,937
28	2	1358	Motorlet M 602	Turbohélice	5	Avia V-518	3,5	7
29	2	533 (715 shp)	Garret TPE331- 5-252D	Turbohélice	4	Hartzell HC- B4TN- 5ML/LT10574	2,73	
30	2	194 (260 hp)	Allison 250- B17C	Turbohélice	2	Hartzell	1,98	
31	2	224 (300 hp)	Zoche ZO 02A	Pistão	3		1,90	
32	2	73,5 (98,6hp)	Rotax 912 ULS	Pistão	3	Woodcomb		2,97
----	---	------------------	---	-------------	---	--	------	------
33	2	462 (620 shp)	Garret- AtiResearch TPE 331-8-401	Turbohélice	3	Hartzell		
34	2	671 (900 shp)	Garret TPE331- 10U-513G	Turbohélice	4	Dowty Rotor R.321	2,69	
35	2	231	Continental TSIO-520L	Pistão	3	Hartzell	1,98	2,03
36	2	134 (180 hp)	Textron Lycoming	Pistão	2	Hartzell	1,85	
37	2	261 (350 hp)	Teledyne Continental TSIO-550-E	Pistão	3	Hartzell FC7663D-2R (FRONTAL) FLC7663DF- 2RX (TRAZEIRA)	1,93	
38	2	224 (300 hp)	Textron Lycoming IO- 540-MIC5	Pistão	3	Hartzell HCE3YR- 2ATLF/FLC7468	1,93	
39	2	101 (135 hp)	Thielert Centurion 1.7	Pistão	3	MTV-6-A		
40	2	164 (220 hp)	Teledyne Continental	Pistão	6	Hartzell	1,93	3,8

Tabela 4.8 - Tabelas Comparativas (continuação)

Pesos e Cargas									
N°	Peso Vazio	Peso Max. de Decolagem	Peso Max. de Pouso	Peso Max. Zero Combustível	Carga Paga Máxima	Peso do Combustível	Carga Alar		
	kg	kg	kg	kg	kg	kg	kg/m²		
1	3380	5600	5300	5180			193,1		

2	3175	5600	5300				204
3	3400	5700	5500	5290	1850	1100	173,5
4	3433	5250	5000				317,4
5	3485	5700		5556	1730		226
6	3431	5466	5035	4536		1732	
7	2985	4581	4354				
8	3656	5670		4990		1653	201,6
9	4360	6950	6600	6300	1805	1372	
10	1640	2850		2550	910	680	153,23
11	3039	4767	4529		907	1224	302,3
12	2283	4246		3856	1563	1444	
13	1230	1990	1890				107
14	1939	3073	3073				155,3
15	2620	4944					190,3
16	1780	2550				500	181,8
17	1871	2880	2812			991 (litros)	158,2
18	2145	3379	3265		136	2218(litros)	
19	3009	5670	5445			1537(litros)	4,5
20	2245	3855					
21	2222	3538					166,4
22	1866	3175				727(litros)	149,4
23	2209	4082	4082	3265		1476(litros)	4,42
24	4044	6350	6033	5352	1308	1732	
25	2778	4649	4354	3969			188,1

26	3363	5670			1941	1171	39,02
27	2840	5300	5300	4700	1700	1233	145,9
28	8730	14000	13500	12800	3800	2650	250
29	2980	5700	5700		2127		178,1
30	1914	3175	3084	2994	608		
31	1730	2850	2850	2550		848(litros)	153,2
32	925	1375			400	240(litros)	82,6
33	2288	4309	4218			1703(litros)	
34	3833	6001		5670		1969	232,8
35	1808	2785	2767	2585			158,2
36	1174	1724					100,8
37	1533	2857				499	186,4
38	1760	2631	2631			612	125,6
39	1080	1650			620		100,2
40	1548	2154	2047	2031			111,1

4.1.2 Fichas técnicas

As fichas técnicas foram desenvolvidas para facilitar a observação das informações mais relevantes da tabela comparativa e também para que seja possível visualizar a configuração externa das aeronaves. Ela consiste de uma foto aliada às três vistas da aeronave e às informações desejadas.

BAe Jetstream 31

N° de lugares	12	Vel. nunca excedida (Km/h)	
Envergadura (m)	15,85	Vel. max de cruzeiro (Km/h)	488
Comprimento (m)	14,37	Vel. Stall c/ Flaps(Km/h)	159
Altura (m)	5,32	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	25,2	Razão de subida (ft/min)	2080
Alongamento	10	Distância de decolagem(m)	
Perfis	NACA 63A418 NACA 63A412	Alcance (Km)	
Peso vazio (Kg)	4360	Motor	Garret TPE331- 10UG
Peso máximo (Kg)	6950	Potência individual (Kw)	701 (940 shp)
Carga útil (Kg)	1805	Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	25000
Peso / Potência (Kg/KW)	4,96		

Beechcraft B99 Airliner

N° de lugares		Vel. nunca excedida (Km/h)	
Envergadura (m)	14	Vel. max de cruzeiro (Km/h)	459
Comprimento (m)	13,58	Vel. Stall c/ Flaps(Km/h)	
Altura (m)	4,38	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)		Razão de subida (ft/min)	2090
Alongamento		Distância de decolagem(m)	506
Perfis	NACA 23018	Alcance (Km)	1339
	NACA 23012		
Peso vazio (Kg)	2620	Motor	Pratt & Whitney
			PT6A-28
Peso máximo (Kg)	4944	Potência individual (Kw)	507 (680 ehp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	190,3	Teto de serviço (ft)	26313
Peso / Potência (Kg/KW)	4,88		

Dornier 228-101

Nº de lugares	17	Vel.nunca excedida (Km/h)	472
Envergadura (m)	16,97	Vel. max de cruzeiro (Km/h)	428
Comprimento (m)	15,04	Vel. Stall c/ Flaps(Km/h)	117
Altura (m)	4,86	Vel. Stall s/ Flaps(Km/h)	146
Área alar (m ²)	32	Razão de subida (ft/min)	2025
Alongamento	XXXX	Distância de decolagem(m)	411
Perfis	XXXX	Alcance (Km)	1343
Peso vazio (Kg)	2980	Motor	Garret TPE331- 5-252D
Peso máximo (Kg)	5700	Potência individual (Kw)	533 (715 shp)
Carga útil (Kg)	2127	Material	Metálico
Carga alar (kg/m ²)	178,1	Teto de serviço (ft)	29600
Peso / Potência (Kg/KW)	XXXX		

Embraer Emb-111 Bandeirante

N° de lugares	Até 21 passageiros	Vel.nunca excedida (Km/h)	558
Envergadura (m)	15,32	Vel. max de cruzeiro (Km/h)	422
Comprimento (m)	14,23	Vel. Stall c/ Flaps(Km/h)	132
Altura (m)	4,13	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	29	Razão de subida (ft/min)	1700
Alongamento		Distância de decolagem(m)	380
Perfis	NACA 23016 NACA 23012	Alcance (Km)	2220
Peso vazio (Kg)	3380	Motor	Pratt & Whitney PT6A-27
Peso máximo (Kg)	5600	Potência individual (Kw)	507 (680 shp)
Carga útil (Kg)		Material	Metálico
Carga alar (kg/m ²)	193,1	Teto de serviço (ft)	26250
Peso / Potência (Kg/KW)	5,52		

Fairchild Merlin 300

N° de lugares	10	Vel.nunca excedida (Km/h)	490
Envergadura (m)	16,6	Vel. max de cruzeiro (Km/h)	555
Comprimento (m)	12,85	Vel. Stall c/ Flaps(Km/h)	169
Altura (m)	5,13	Vel. Stall s/ Flaps(Km/h)	193
Área alar (m ²)	25,78	Razão de subida (ft/min)	2600
Alongamento	7,7	Distância de decolagem(m)	890
Perfis	XXXX	Alcance (Km)	4284
Peso vazio (Kg)	3833	Motor	Garret TPE331-10U-513G
Peso máximo (Kg)	6001	Potência individual (Kw)	671 (900 shp)
Carga útil (Kg)	XXXX	Material	Metálico
Carga alar (kg/m ²)	232,8	Teto de serviço (ft)	31000
Peso / Potência (Kg/KW)	XXXX		

HAMC Y-12 II STOL

N° de lugares	19	Vel.nunca excedida (Km/h)	328
Envergadura (m)	17,235	Vel. max de cruzeiro (Km/h)	292
Comprimento (m)	14,86	Vel. Stall c/ Flaps(Km/h)	
Altura (m)	5,575	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	34,27	Razão de subida (ft/min)	1655
Alongamento	8,7	Distância de decolagem(m)	340
Perfis	LS(1)-0417 LS(1)-0417	Alcance (Km)	1340
Peso vazio (Kg)	2840	Motor	Pratt & WhitneyCanada PT6A-27
Peso máximo (Kg)	5300	Potência individual (Kw)	507 (680 shp)
Carga útil (Kg)	1700	Material	Metálico
Carga alar (kg/m ²)	145,9	Teto de serviço (ft)	22960
Peso / Potência (Kg/KW)	5,23		

LET L-610

N° de lugares	43	Vel.nunca excedida (Km/h)	400
Envergadura (m)	25,6	Vel. max de cruzeiro (Km/h)	490
Comprimento (m)	21,419	Vel. Stall c/ Flaps(Km/h)	139
Altura (m)	7,608	Vel. Stall s/ Flaps(Km/h)	172
Área alar (m ²)	56	Razão de subida (ft/min)	1870
Alongamento	11,7	Distância de decolagem(m)	370
Perfis	MS(1)-0318D MS(1)-0312	Alcance (Km)	2406
Peso vazio (Kg)	8730	Motor	Motorlet M 602
Peso máximo (Kg)	14000	Potência individual (Kw)	1358
Carga útil (Kg)	3800	Material	Metálico
Carga alar (kg/m ²)	250	Teto de serviço (ft)	33630
Peso / Potência (Kg/KW)	5,147		

LET L410

N° de lugares		Vel. nunca excedida (Km/h)	400
Envergadura (m)	17,48	Vel. max de cruzeiro (Km/h)	370
Comprimento (m)	13,61	Vel. Stall c/ Flaps(Km/h)	118
Altura (m)	5,65	Vel. Stall s/ Flaps(Km/h)	152
Área alar (m ²)	32,86	Razão de subida (ft/min)	1615
Alongamento	9,3	Distância de decolagem(m)	496
Perfís	NACA 63A418 NACA 63A412	Alcance (Km)	1300
Peso vazio (Kg)	2620	Motor	Pratt & Whitney PT6A-27
Peso máximo (Kg)	4944	Potência individual (Kw)	507 (680 shp)
Carga útil (Kg)	1850	Material	
Carga alar (kg/m ²)	173,5	Teto de serviço (ft)	23300
Peso / Potência (Kg/KW)	5,35		

Mitsubishi UM-2L

	1		
Nº de lugares		Vel. nunca excedida (Km/h)	
Envergadura (m)	11,49	Vel. max de cruzeiro (Km/h)	547
Comprimento (m)	12,01	Vel. Stall c/ Flaps(Km/h)	142
Altura (m)	4,17	Vel. Stall s/ Flaps(Km/h)	185
Área alar (m ²)	16,55	Razão de subida (ft/min)	2630
Alongamento	7,71	Distância de decolagem(m)	661
Perfis	NACA 64A415 NACA 63A212	Alcance (Km)	2334
Peso vazio (Kg)	3433	Motor	AIResearch TPE 331-6-251M
Peso máximo (Kg)	5250	Potência individual (Kw)	540 (724 shp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	317,4	Teto de serviço (ft)	29600
Peso / Potência (Kg/KW)	4,54		

Partenavia AP 68TP-600 Viator

Nº de lugares	10	10 Vel.nunca excedida (Km/h)	
Envergadura (m)	12	12 Vel. max de cruzeiro (Km/h)	
Comprimento (m)	10,85	Vel. Stall c/ Flaps(Km/h)	130
Altura (m)	3,64	Vel. Stall s/ Flaps(Km/h)	151
Área alar (m ²)	18,6	Razão de subida (ft/min)	1932
Alongamento	7,7	Distância de decolagem(m)	275
Perfis		Alcance (Km)	1594
Peso vazio (Kg)	1640	Motor	Allison 250- B17C
Peso máximo (Kg)	2850	Potência individual (Kw)	244,5 (328 shp)
Carga útil (Kg)	910	Material	Metálico
Carga alar (kg/m ²)	153,23	Teto de serviço (ft)	25000
Peso / Potência (Kg/KW)	5,83		

Partenavia P 68C

Nº de lugares	6	Vel.nunca excedida (Km/h)	
Envergadura (m)	12	Vel. max de cruzeiro (Km/h)	307
Comprimento (m)	9,55	Vel. Stall c/ Flaps(Km/h)	106
Altura (m)	3,4	Vel. Stall s/ Flaps(Km/h)	120
Área alar (m ²)	18,6	Razão de subida (ft/min)	1500
Alongamento	7,7	Distância de decolagem(m)	230
Perfis		Alcance (Km)	2242
Peso vazio (Kg)	1230	Motor	Lycoming IO- 360-A1B6
Peso máximo (Kg)	1990	Potência individual (Kw)	149 (200 hp)
Carga útil (Kg)		Material	Metálico
Carga alar (kg/m ²)	107	Teto de serviço (ft)	19200
Peso / Potência (Kg/KW)	6,68		

Pilatus Britten Norman BN-2T

N° de lugares		Vel. nunca excedida (Km/h)	339
Envergadura (m)	14,94	Vel. max de cruzeiro (Km/h)	280
Comprimento (m)	10,86	Vel. Stall c/ Flaps(Km/h)	74
Altura (m)	4,18	Vel. Stall s/ Flaps(Km/h)	92
Área alar (m ²)	30,19	Razão de subida (ft/min)	1130
Alongamento		Distância de decolagem(m)	496
Perfis	NACA 23012	Alcance (Km)	1965
Peso vazio (Kg)	1914	Motor	Allison 250- B17C
Peso máximo (Kg)	3175	Potência individual (Kw)	194 (260 hp)
Carga útil (Kg)	608	Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	17200
Peso / Potência (Kg/KW)			

Piper (PA-42-1000) Cheyenne 400

N° de lugares	10	Vel. nunca excedida (Km/h)	
Envergadura (m)	14,53	Vel. max de cruzeiro (Km/h)	650
Comprimento (m)	13,23	Vel. Stall c/ Flaps(Km/h)	156
Altura (m)	5	Vel. Stall s/ Flaps(Km/h)	172
Área alar (m ²)	27,22	Razão de subida (ft/min)	3242
Alongamento	7,8	7,8 Distância de decolagem(m)	
Perfis	NACA 63A415 NACA 63A212	Alcance (Km)	2304
Peso vazio (Kg)	Peso vazio (Kg) 3431		Garret TPE331- 14A/14B
Peso máximo (Kg)	5466	Potência individual (Kw)	746 (1000 shp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	41000
Peso / Potência (Kg/KW)	4,73		

Reims Aviation Cessna F406 Caravan II

N° de lugares	14	14 Vel. nunca excedida (Km/h)	
Envergadura (m)	15,08	Vel. max de cruzeiro (Km/h)	455
Comprimento (m)	11,89	Vel. Stall c/ Flaps(Km/h)	150
Altura (m)	4,01	Vel. Stall s/ Flaps(Km/h)	174
Área alar (m ²)	23,5	Razão de subida (ft/min)	1850
Alongamento	9,7	9,7 Distância de decolagem(m)	
Perfís	NACA 23018 NACA 23012	Alcance (Km)	2135
Peso vazio (Kg)	2283	Motor	Pratt & Whitney PT6A-112
Peso máximo (Kg)	4246	Potência individual (Kw)	373 (500shp)
Carga útil (Kg)	1563	Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	30000
Peso / Potência (Kg/KW)			

Rockwell International Commander 690A

N° de lugares	7 a 12	Vel. nunca excedida (Km/h)	
Envergadura (m)	14,22	Vel. max de cruzeiro (Km/h)	518
Comprimento (m)	13,52	Vel. Stall c/ Flaps(Km/h)	143,5
Altura (m)	4,56	Vel. Stall s/ Flaps(Km/h)	152
Área alar (m ²)	24,7	Razão de subida (ft/min)	2849
Alongamento	8,19	Distância de decolagem(m)	437
Perfis		Alcance (Km)	2705
Peso vazio (Kg)	2778	Motor	AiResearch TPE 331-5-251K
Peso máximo (Kg)	4649	Potência individual (Kw)	522
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	188,1	Teto de serviço (ft)	33000
Peso / Potência (Kg/KW)	4,54		

Scottish Aviation Srs. 200

N° de lugares		Vel. nunca excedida (Km/h)	555
Envergadura (m)	15,85	Vel. max de cruzeiro (Km/h)	422
Comprimento (m)	14,37	Vel. Stall c/ Flaps(Km/h)	141
Altura (m)	5,32	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	25,08	Razão de subida (ft/min)	2500
Alongamento	10	10 Distância de decolagem(m)	
Perfis	NACA 63A418 NACA 63A412	Alcance (Km)	2224
Peso vazio (Kg)	3485	Motor	Turboméca Astazou XVIC2
Peso máximo (Kg)	5700	Potência individual (Kw)	743 (996 shp)
Carga útil (Kg)	1730	Material	
Carga alar (kg/m ²)	226	Teto de serviço (ft)	25000
Peso / Potência (Kg/KW)	3,84		

Piper PA-34-220T Seneca V

N° de lugares	6	Vel.nunca excedida (km/h)	402
Envergadura (m)	11,85	Vel. max de cruzeiro (km/h)	182
Comprimento (m)	8,72	Vel. Stall c/ Flaps (km/h)	
Altura (m)	3,02	Vel. Stall s/ Flaps (km/h)	
Área alar (m ²)	19,39	Razão de subida (m/min)	446
Alongamento	7,3	Distância de decolagem (m)	349
Perfis	NACA 652-415	Alcance (km)	1529
Peso vazio (kg)	1548	Motor	2-Teledyne Continental TSIO-360-RB
Peso máximo (kg)	2165	Potência (Kw)	164(220)
Carga útil	83	Material	Fibra de vidro
Carga alar (kg/m ²)	111,1	Teto de serviço (ft)	16500
Peso / Potência (kg/kW)	6,57		

Beech King Air C90

N° de lugares	6	Vel.nunca excedida (km/h)	461
Envergadura (m)	15,32	Vel. max de cruzeiro (km/h)	457
Comprimento (m)	10,82	Vel. Stall c/ Flaps (km/h)	144
Altura (m)	4,34	Vel. Stall s/ Flaps (km/h)	163
Área alar(m ²)	27,31	Razão de subida (m/min)	610
Alongamento	8,6	Distância de decolagem (m)	620
Perfis	NACA 230141 e	Alcance (km)	2592
	NACA 23016,22		
Peso vazio (kg)	3040	Motor	Pratt & Whitney
			Canadá PT6A-21
Peso máximo (kg)	4608	Potência (Kw)	410(550)
Carga útil		Material	Magnésio
Carga alar (kg/m ²)	167,8	Teto de serviço (ft)	28100
Peso/Potência (kg/kw)	5,59		

Beechcraft Baron 58 P

Beech Baron 58 (two Teledyne Continental IO-550-C piston engines) (Jane's/Dennis Punnett) NEW/0568939

N° de lugares	6	Vel.nunca excedida (km/h)	436
Envergadura (m)	11,53	Vel. max de cruzeiro (km/h)	363
Comprimento (m)	9,09	Vel. Stall c/ Flaps (km/h)	
Altura (m)	2,79	Vel. Stall s/ Flaps (km/h)	141
Área alar (m ²)		Razão de subida (m/min)	1424
Alongamento		Distância de decolagem (m)	504
Perfis		Alcance (km)	2086
Peso vazio (kg)	1808	Motor	Continental TSIO 520 L
Peso máximo (kg)	2785	Potência (Kw)	231
Carga útil		Material	
Carga alar (kg/m ²)	158,2	Teto de serviço (ft)	
Peso / Potência (kg/kW)	6,03		

Beechcraft Duke B60

Nº de lugares	6	Vel.nunca excedida (km/h)	490
Envergadura (m)	11,97	Vel. max de cruzeiro (km/h)	447
Comprimento (m)	10,31	Vel. Stall c/ Flaps (km/h)	135
Altura (m)	3,76	Vel. Stall s/ Flaps (km/h)	150
Área alar (m ²)	19,78	Razão de subida (m/min)	1601
Alongamento	7,243	Distância de decolagem (m)	611
Perfis	NACA23016.5 /	Alaanaa (Izm)	1862
	NACA 23010.5	Alcalice (Kill)	
Peso vazio (kg)	1939	Motor	Lycoming
1 050 Vuzio (Kg)	1757	11000	TIO 541-E1 C4
Peso máximo (kg)	3073	Potência (Kw)	283
Carga útil		Material	
Carga alar (kg/m ²)	155,3	Teto de serviço (ft)	
Peso / Potência (kg/kW)	5,43		

Beechcraft Super King Air B200

N° de lugares	13	Vel.nunca excedida (km/h)	560
Envergadura (m)	16,61	Vel. max de cruzeiro (km/h)	536
Comprimento (m)	13,36	Vel. Stall c/ Flaps (km/h)	139,5
Altura (m)	4,57	Vel. Stall s/ Flaps (km/h)	183
Área alar (m ²)	28,15	Razão de subida (m/min)	2450
Alongamento	9,8	Distância de decolagem (m)	592
Perfis	NACA 23018.5 /	Alcance (km)	2752
	NACA 23011.3		
Peso vazio (kg)	3318	Motor	Pratt&Whitney
			PT-6 A41
Peso máximo (kg)	5670	Potência (Kw)	634
Carga útil		Material	
Carga alar (kg/m ²)	201,6	Teto de serviço (ft)	
Peso / Potência (kg/kW)	4,47		

Cessna 414

N° de lugares	6/7	Vel.nunca excedida (km/h)	
Envergadura (m)	12,17	Vel. max de cruzeiro (km/h)	438
Comprimento (m)	10,29	Vel. Stall c/ Flaps (km/h)	
Altura (m)	3,55	Vel. Stall s/ Flaps (km/h)	
Área alar (m ²)	18,18	Razão de subida (m/min)	1580
Alongamento	7,5	Distância de decolagem (m)	517
Perfis		Alcance (km)	2409
Peso vazio (kg)	1871	Motor	Continental TSIO 520
Peso máximo (kg)	2880	Potência (Kw)	
Carga útil		Material	
Carga alar (kg/m ²)	158,2	Teto de serviço (ft)	
Peso / Potência (kg/kW)	6,23		

Cessna 421C II

N° de lugares	6	Vel. nunca excedida (Km/h)	475
Envergadura (m)	12,53	Vel. max de cruzeiro (Km/h)	444
Comprimento (m)	11,09	Vel. Stall c/ Flaps(Km/h)	
Largura da cabine (m)		Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	19,97	Razão de subida (ft/min)	1940
Alongamento		Distância de decolagem(m)	544
Perfis	Naca 23018 / Naca 23015/Naca 23009	Alcance (Km)	2755
Peso vazio (Kg)	2041	Motor	Continental GTSIO 520 L
Peso máximo (Kg)	3379	Potência individual (Kw)	280 (375 shp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	169,4	Teto de serviço (ft)	30200
Peso / Potência (Kg/KW)	6.03		

Piper PA-31P Navajo

N° de lugares		Vel.nunca excedida (km/h)	
Envergadura (m)	12,40	Vel. max de cruzeiro (km/h)	428
Comprimento (m)	10,52	Vel. Stall c/ Flaps (km/h)	
Altura (m)	3,99	Vel. Stall s/ Flaps (km/h)	
Área alar (m^2)	21,3	Razão de subida (m/min)	1740
Alongamento		Distância de decolagem (m)	
Perfis		Alcance (km)	2150
Peso vazio (kg)	2380	Motor	Lycoming TIGO 541 E1 A
Peso máximo (kg)	3540	Potência (Kw)	317
Carga útil		Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	29000
Peso / Potência (kg/kW)			

Embraer 121 Xingu

N° de lugares		Vel.nunca excedida (km/h)	
Envergadura (m)	14,45	Vel. max de cruzeiro (km/h)	450
Comprimento (m)	12,25	Vel. Stall c/ Flaps (km/h)	
Altura (m)	4,94	Vel. Stall s/ Flaps (km/h)	
Área alar (m ²)	27,5	Razão de subida (m/min)	1400
Alongamento		Distância de decolagem (m)	
Perfis		Alcance (km)	2150
Peso vazio (kg)	3620	Motor	Pratt & Whitney PT A 28
Peso máximo (kg)	5670	Potência (Kw)	505
Carga útil		Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	26000
Peso / Potência (kg/kW)			

Diamond DA 42

Nº de lugares		Vel.nunca excedida (km/h)	
Envergadura (m)	13,42	Vel. max de cruzeiro (km/h)	376
Comprimento (m)	8,5	Vel. Stall c/ Flaps (km/h)	
Altura (m)	2,6	Vel. Stall s/ Flaps (km/h)	
Área alar (m ²)	16,46	Razão de subida (m/min)	1730
Alongamento	10,9	Distância de decolagem (m)	290
Perfis		Alcance (km)	2750
Peso vazio (kg)	1080	Motor	Thielert Centurion 1.7 Diesel
Peso máximo (kg)	1650	Potência (Kw)	101
Carga útil		Material	Composto
Carga alar (kg/m ²)	100,2	Teto de serviço (ft)	
Peso / Potência (kg/kW)	8,2		

Angel 44

N° de lugares	6	Vel. nunca excedida (Km/h)	387
Envergadura (m)	12,16	Vel. max de cruzeiro (Km/h)	313
Comprimento (m)	10,21	Vel. Stall c/ Flaps(Km/h)	106
Altura (m)	3,51	Vel. Stall s/ Flaps(Km/h)	95
Área alar (m ²)	20,94	Razão de subida (ft/min)	196
Alongamento	7,06	Distância de decolagem(m)	206
Perfis	NACA 23018-23010	Alcance (Km)	3185
Peso vazio (Kg)	1760	Motor	Textron Lycoming IO-540-M1C5
Peso máximo (Kg)	2631	Potência individual (Kw)	224 (300 shp)
Carga útil (Kg)		Material	Aluminio e aço
Carga alar (kg/m ²)	125,6	Teto de serviço (ft)	20560
Peso / Potência (Kg/KW)	5,87		

VulcanAir VA 300

N° de lugares	8	Vel. nunca excedida (Km/h)	
Envergadura (m)	12	Vel. max de cruzeiro (Km/h)	352
Comprimento (m)	10,18	Vel. Stall c/ Flaps(Km/h)	124
Altura (m)	3,63	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	18,60	Razão de subida (ft/min)	335
Alongamento	7,7	Distância de decolagem(m)	600
Perfis	NACA 63-3515	Alcance (Km)	3080
Peso vazio (Kg)	1730	Motor	Zoche ZO 02A
Peso máximo (Kg)	2875	Potência individual (Kw)	224 (300 shp)
Carga útil (Kg)		Material	Metal
Carga alar (kg/m ²)	153,2	Teto de serviço (ft)	25000
Peso / Potência (Kg/KW)	6,37		

Piaggio P.180 Avanti

N° de lugares	10	Vel. nunca excedida (Km/h)	732
Envergadura (m)	14,035	Vel. max de cruzeiro (Km/h)	724
Comprimento (m)	14,41	Vel. Stall c/ Flaps(Km/h)	172
Altura (m)	3,9	Vel. Stall s/ Flaps(Km/h)	202
Área alar (m ²)	16	Razão de subida (ft/min)	755
Alongamento	12,3	Distância de decolagem(m)	869
Perfis		Alcance (Km)	3320
Peso vazio (Kg)	3402	Motor	Pratt e Whitney Canada Pt6A-66
Peso máximo (Kg)	5239	Potência individual (Kw)	1107 (1485 shp)
Carga útil (Kg)	907	Material	90% Aluminio e 10% compósito.
Carga alar (kg/m ²)	327,4	Teto de serviço (ft)	39000
Peso / Potência (Kg/KW)	4,13		

ZRIPSL EM-11 Orka

N° de lugares	4	Vel. nunca excedida (Km/h)	320
Envergadura (m)	13,5	Vel. max de cruzeiro (Km/h)	230
Comprimento (m)	8,65	Vel. Stall c/ Flaps(Km/h)	95
Altura (m)	2,62	Vel. Stall s/ Flaps(Km/h)	
Área alar (m ²)	16,65	Razão de subida (ft/min)	787
Alongamento	10,9	Distância de decolagem(m)	
Perfis		Alcance (Km)	1500
Peso vazio (Kg)	925	Motor	Textron Lycoming IO-540-M1C5
Peso máximo (Kg)	1375	Potência individual (Kw)	298 (400 shp)
Carga útil (Kg)	400	Material	Composito
Carga alar (kg/m ²)	82,6	Teto de serviço (ft)	
Peso / Potência (Kg/KW)	9 35		

HPA TT62 Alekto

N° de lugares	5	Vel.nunca excedida (Km/h)	
Envergadura m	11,24m	Vel. max de cruzeiro (Km/h)	444
Comprimento m	11,52m	Vel. Stall c/ Flaps(Km/h)	
Altura Total m	3,71m	Vel. Stall s/ Flaps(Km/h)	
Área alar m ²	14,03m	Alcance(Km)	1800
Alongamento	9	Distância de decolagem(m)	
Perfis	LS(1)-0413	Razão de subida (ft/min)	1800
Peso vazio (Kg)	1780	Motor	TAE Centurion 4.0 V-8
Peso máximo (Kg)	2550	Potência individual (Kw)	228 (306 hp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	180,1	Teto de serviço (ft)	
Peso / Potência (Kg/KW)	5,59		

Dominion Skytrade 800 STOL

N° de lugares		Vel.nunca excedida (Km/h)	
Envergadura m	15,49	Vel. max de cruzeiro (Km/h)	391
Comprimento m	12,07	Vel. Stall c/ Flaps(Km/h)	
Altura Total m		Vel. Stall s/ Flaps(Km/h)	
Área alar m ²	34,44	Alcance(Km)	2575
Alongamento		Distância de decolagem(m)	
Perfis		Razão de subida (ft/min)	1750
Peso vazio (Kg)	3009	Motor	Pratt & Whitney PT6A-27
Peso máximo (Kg)	5670	Potência individual (Kw)	335,5 (450 hp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	4,5	Teto de serviço (ft)	
Peso / Potência (Kg/KW)	8,45		

McKinnon G-21G Turbo-Goose

N° de lugares	10 a 12	Vel.nunca excedida (Km/h)	
Envergadura m	16,76	Vel. max de cruzeiro (Km/h)	444
Comprimento m	12,5	Vel. Stall c/ Flaps(Km/h)	
Altura Total m	5,76	Vel. Stall s/ Flaps(Km/h)	
Área alar m ²	35,77	Alcance(Km)	3940
Alongamento		Distância de decolagem(m)	119
Perfis	LS(1)-0413	Razão de subida (ft/min)	1600
Peso vazio (Kg)	1780	Motor	Lycoming TIO-720-C
Peso máximo (Kg)	2550	Potência individual (Kw)	354 (475 hp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	180,1	Teto de serviço (ft)	20000
Peso / Potência (Kg/KW)	5,59		
Piper PA 31T Cheyenne

N° de lugares	6 a 8	Vel.nunca excedida (Km/h)	
Envergadura m	13,01	Vel. max de cruzeiro (Km/h)	525
Comprimento m	10,57	Vel. Stall c/ Flaps(Km/h)	142
Altura Total m	3,89	Vel. Stall s/ Flaps(Km/h)	
Área alar m ²	21,3	Alcance(Km)	2739
Alongamento		Distância de decolagem(m)	567
Perfis	NACA 63 ₂ 415	Razão de subida (ft/min)	2800
Peso vazio (Kg)	2209	Motor	Pratt & Whitney PT6A-28
Peso máximo (Kg)	4082	Potência individual (Kw)	462 (620 ehp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	4,42	Teto de serviço (ft)	29000
Peso / Potência (Kg/KW)	4,41		

Piper PA-31-350

N° de lugares	6 a 8	Vel.nunca excedida (Km/h)	
Envergadura m	12,4	Vel. max de cruzeiro (Km/h)	435
Comprimento m	10,55	Vel. Stall c/ Flaps(Km/h)	137
Altura Total m	3,96	Vel. Stall s/ Flaps(Km/h)	148
Área alar m ²	21,3	Alcance(Km)	1800
Alongamento		Distância de decolagem(m)	480
Perfis	LS(1)-0413	Razão de subida (ft/min)	1390
Peso vazio (Kg)	1866	Motor	Lycoming TIO-540-J2BD
Peso máximo (Kg)	3175	Potência individual (Kw)	261 (350 hp)
Carga útil (Kg)		Material	Х
Carga alar (kg/m ²)	180,1	Teto de serviço (ft)	27200
Peso / Potência (Kg/KW)	6,08		

Beechcraft Starship Series 200

Nº de lugares	8 a 11	Vel.nunca excedida (Km/h)	
Envergadura m	16,6	Vel. max de cruzeiro (Km/h)	620
Comprimento m	14,05	Vel. Stall c/ Flaps(Km/h)	
Altura Total m	3,94	Vel. Stall s/ Flaps(Km/h)	
Área alar m ²	26,1	Alcance(Km)	2920
Alongamento		Distância de decolagem(m)	480
Perfis		Razão de subida (ft/min)	3250
Peso vazio (Kg)		Motor	Pratt & Whitney PT6A-67 A
Peso máximo (Kg)	6700	Potência individual (Kw)	
Carga útil (Kg)	2218	Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	39900
Peso / Potência (Kg/KW)			

Adam 500

Nº de lugares	6	Vel.nunca excedida (Km/h)	
Envergadura m	13,41	Vel. max de cruzeiro (Km/h)	463
Comprimento m	11,18	Vel. Stall c/ Flaps(Km/h)	
Altura Total m	2,9	Vel. Stall s/ Flaps(Km/h)	130
Área alar m ²	15,33	Alcance(Km)	2722
Alongamento	10,9	Distância de decolagem(m)	
Perfis		Razão de subida (ft/min)	1800
Peso vazio (Kg)	1533	Motor	Teledyne Continental TSIO-550-E
Peso máximo (Kg)	2857	Potência individual (Kw)	261 (350 hp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	186,4	Teto de serviço (ft)	25000
Peso / Potência (Kg/KW)	5,48		

Boeing Canada DHC-6 Twin Otter Series 300

N° de lugares	20	Vel.nunca excedida (Km/h)	
Envergadura m	19,81	Vel. max de cruzeiro (Km/h)	338
Comprimento m	15,77	Vel. Stall c/ Flaps(Km/h)	108
Altura Total m	5,94	Vel. Stall s/ Flaps(Km/h)	138
Área alar m ²		Alcance(Km)	1297
Alongamento	10,1	Distância de decolagem(m)	213
Perfis		Razão de subida (ft/min)	1600
Peso vazio (Kg)	3363	Motor	Pratt & Whitney PT6A-27
Peso máximo (Kg)	5670	Potência individual (Kw)	462 (620 shp)
Carga útil (Kg)	1941	Material	
Carga alar (kg/m ²)	39,02	Teto de serviço (ft)	26700
Peso / Potência (Kg/KW)			

Cessna 441 Conquest

Nº de lugares		Vel.nunca excedida (Km/h)	
Envergadura m	14,12	Vel. max de cruzeiro (Km/h)	519
Comprimento m	11,89	Vel. Stall c/ Flaps(Km/h)	
Altura Total m	3,99	Vel. Stall s/ Flaps(Km/h)	
Área alar m ²	22,48	Alcance(Km)	2704
Alongamento	10,1	Distância de decolagem(m)	748
Perfis	NACA 23012	Razão de subida (ft/min)	2405
Peso vazio (Kg)	2288	Motor	Garret-AtiResearch TPE 331-8-401
Peso máximo (Kg)	4309	Potência individual (Kw)	462 (620 shp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)		Teto de serviço (ft)	33200
Peso / Potência (Kg/KW)			

N° de lugares		Vel.nunca excedida (Km/h)	
Envergadura m	11,23	Vel. max de cruzeiro (Km/h)	306
Comprimento m	9,09	Vel. Stall c/ Flaps(Km/h)	117
Altura Total m	3,16	Vel. Stall s/ Flaps(Km/h)	132
Área alar m ²	17,09	Alcance(Km)	2111
Alongamento	7,4	Distância de decolagem(m)	305
Perfis		Razão de subida (ft/min)	1400
Peso vazio (Kg)	1174	Motor	Textron Lycoming
Peso máximo (Kg)	1724	Potência individual (Kw)	134 (180 hp)
Carga útil (Kg)		Material	
Carga alar (kg/m ²)	100,8	Teto de serviço (ft)	20000
Peso / Potência (Kg/KW)	6,42		

5 ESTIMATIVA DE PESO

A estimativa de peso preliminar foi baseada no método apresentado por Roskam (Airplane Design I). Este método estabelece que o peso de combustível da aeronave seja obtido a partir das frações mássicas de combustível correspondentes a cada etapa da missão da mesma. Com este peso calculado pode-se estimar o peso total da aeronave.

Para cada categoria de aeronave, existe uma relação entre o peso máximo e o peso vazio, que pode ser expressa pela equação abaixo.

$$W_E = 10^{\left(\frac{\log W_{To} - A}{B}\right)}$$

Onde A e B são constantes dependentes do tipo de aeronave.

Para um bimotor, Roskam sugere os seguintes valores abaixo para as constantes:

Constante	Valor
А	0,113
В	1,0403

Tabela 5.1 - Constantes A e B

Também é conveniente dividir o peso total da aeronave nas parcelas que se seguem abaixo:

- Woe Peso vazio de operação
- W_f Peso de combustível
- W_{tfo} Peso dos fluidos operacionais
- W_{crew} Peso da tripulação

 W_{pl} - Peso da carga paga W_e - Peso vazio

Na qual:

$$\begin{split} W_{TO} &= W_{OE} + W_F + W_{PL} \\ W_{OE} &= W_E + W_{TFO} + W_{CREW} \\ W_E &= W_{CREW} + W_{TFO} - W_{OE} \end{split}$$

Onde Wto é o peso máximo de decolagem.

Portanto, a obtenção do peso máximo se torna nada mais do que a determinação de cada parcela que o compõe.

O procedimento usado para calcular o peso máximo da aeronave consiste de seis passos e será apresentado abaixo.

Passo 1: Determinação da carga paga (Wpl)

Como o avião em projeto precisa levar seis passageiros mais suas respectivas bagagens, chega-se à seguinte carga paga:

Peso	Valor
Passageiro	175lbs
Bagagem por passageiro	30lbs

Tabela 5.2 - Carg	ga Paga
-------------------	---------

O peso total incluindo passageiros e bagagem é de:

Wpl = 1230lbs = 553,5kg

Passo 2: Estimativa de um valor para o peso máximo de decolagem

Esta estimativa foi feita levando em consideração aviões da mesma classe da aeronave a ser projetada. Analisando os aviões com alcance próximo do requerido para este projeto, com o mesmo número de passageiros, e com outras características em comum, chega-se à conclusão que tal aeronave deve possuir um peso entre 3000kg a 4000kg. Isso coloca a aeronave em competição, em termos de peso, com aeronaves tais como o KingAir C90 Cessna 421,e Piper PA-31 P Navajo, Piaggio P180 Avanti, entre outros. Após um grande número de iterações chegamos ao seguinte valor:

Wto (guess) = 8245,29 lbs = 3740 kg

Passo 3: Determinação do peso de combustível

Para o cálculo do peso de combustível, usar-se-á o método das frações de combustível. Neste, a missão da aeronave é dividida em uma série de fases, e o combustível utilizado em cada uma é estimado por meio de tabelas presentes em Roskam [1]. Após a determinação destes valores, pode-se calcular o peso de combustível através das fórmulas:

$$M_{ff} = \left(\frac{W_1}{W_{TO}}\right) \prod_{i=1}^n M_{fi}$$
$$W_{Fused} = \left(1 - M_{ff}\right) \cdot W_{TO}$$

Onde:

M_{ff} - fração de combustível total utilizada
 W₁ - Peso da Aeronave após o aquecimento
 W_{TO} - Peso Máximo de Decolagem
 W_{Fused} - Peso de Combustível Utilizado

A fração mássica de cada missão é calculada separadamente como se segue:

Cruzeiro:

Inicialmente é necessário calcular uma polar de arrasto preliminar para esta condição de vôo. A equação da polar pode ser escrita da seguinte forma:

$$C_D = C_{Do} + \frac{C_L^2}{\pi \cdot A \cdot e}$$

Onde:

e - fator de Oswald

C_L - coeficiente de sustentação de cruzeiro

C_{Do} - parcela do coeficiente de arrasto que independe da sustentação

O coeficiente de sustentação pode ser obtido por meio da equação:

$$C_L = \frac{2 \cdot W}{\rho \cdot S \cdot V^2}$$

Onde:

W - Peso da aeronave na condição de cruzeiro

ρ - Peso específico do ar

S - Área da asa

V - Velocidade de cruzeiro

O arrasto parasita é obtido pela expressão seguinte:

$$C_{D_0} = \frac{f}{S}$$

Onde f denota a área parasita equivalente e S a área alar. Roskan [1] sugere a seguinte expressão:

$$\log_{10} f = a + b \log_{10} S_{WET}$$

Onde:

a, b - coeficientes que dependem do coeficiente de fricção (C_F) e podem ser obtidos pela tabela 3.4 de Roskan[1]

S_{WET} - área molhada, pode ser obtida através da relação:

$$\log_{10} S_{WET} = c + d \log_{10} W_{TO}$$

Onde:

c, d - coeficientes que dependem da categoria da aeronave. Podem ser obtidos pela tabela 3.5 de Roskan[1]

Como a missão possui duas etapas de cruzeiro, será necessário calcular separadamente para cada condição. Os resultados seguem abaixo:

Características geométricas		
Área (S) / m ²	25,0	
Alongamento (A)	10,24	
Envergadura / m	16,0	
Comprimento / m	13,0	

Tabela 5.3 – Característica	s geométricas e cálculo de f

Cálculo de f				
$C_{\rm F}$	0,003			
a	-2,5229			
b	1			
f	3,51			

Tabela 5.4 – Cálculo de Swet e CDo

Cálculo de S _{wet}	Cálculo de C _{Do}		
с	0,8635	C _{Do} (limpo)	0,013071
d	0,5632	C _{Do} (pouso)	0,093071
S_{wet} / ft^2	1172,4	C _{Do} (subida)	0,028071

O fator k que multiplica o termo quadrático da sustentação é definido como:

$$k = \frac{1}{\pi \cdot A \cdot e}$$

O fator de Oswald total é obtido através da soma do inverso de cada contribuição (flapes, trem de pouso etc). Para a aeronave em questão:

Fator de Oswald para aeronave limpa = 0.8Fator de Oswald para pouso = 0.7

Desta forma: k (aeronave limpa) = 0,038886 k (pouso) = 0,044407

Após a determinação da polar pode-se determinar o consumo de combustível através das equações de Breguet para autonomia e alcance aplicadas à situação de cruzeiro:

$$E = 375 \cdot \left(\frac{1}{V}\right) \cdot \left(\frac{\eta_p}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_1}{W_2}\right)$$

$$R = 375 \cdot \left(\frac{\eta_p}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_1}{W_2}\right)$$

Onde:

- η_p eficiência da hélice (tabela 2.2 de Roskan [1])
- cp consumo específico (tabela 2.2 de Roskan [1])
- L força de sustentação
- D força de arrasto

Como especificado, o cruzeiro principal deve atender a uma distância de 3000km voando a 450km/h. Por isso a equação do alcance R é usada para se obter a relação (W_1/W_2) . Para o cruzeiro menor (etapa 3 da missão), foi definido um vôo de 10 minutos a uma velocidade de 250km/h. Isso leva a uma distância percorrida de 41,67km. Aplica-se novamente a equação do alcance para se obter a relação ente o peso inicial da etapa pelo peso final da mesma. Para o cálculo, C_{Do} , fator de Oswald e k, ambos correspondem à situação de aeronave limpa. O resultado final é apresentado abaixo:

Cruzeiro 1 (etapa 3)				
η_p	0,82			
c _{p/} lbs/hp/hr	0,39			
C _L	0,6558			
C _D	0,0297			
L/D	22,02			
R / km	41,67			
W ₁ /W ₂	0,9985			

Tabela 5.5 - Fração mássica do Cruzeiro 1

Cruzeiro 2 (etapa 5)				
η _p 0,82				
c _{p/} lbs/hp/hr	0,39			
C _L	0,34			
C _D	0,01757			
L/D	19,37			
R / km	3000			
W ₁ /W ₂	0,8851			

Tabela 5.6 - Fração mássica do Cruzeiro 2

Espera

Para a etapa de espera, calcula-se a fração mássica da mesma forma calculada para o cruzeiro, porém, ao invés de se utilizar a equação do alcance, utiliza-se a equação da autonomia. Estipulou-se uma espera de aproximadamente 30 minutos. A velocidade proposta foi de 250km/h. Para o cálculo, C_{Do}, fator de Oswald e k, ambos correspondem à situação de aeronave limpa.

Na espera, admite-se o avião voando na condição de maior autonomia. Desta forma, o valor do coeficiente de sustentação vale:

$$C_L = \sqrt{\frac{3 \cdot C_{D_o}}{k}}$$

O resultado final para a espera é apresentado abaixo:

Espera (Loiter)				
η_p	0,82			
c _{p/} lbs/hp/hr	0,39			
C _L	1,004			
C _D	0,052			
L/D	19,21			
E / horas	0,5			
W ₁ /W ₂	0,9946			

Tabela 5.7 - Fração mássica da Espera

As frações mássicas de combustível para as etapas restantes da missão estão tabeladas em Roskan [1]. Monta-se a tabela abaixo com os resultados finais:

Missão	M _{ff}
Warm-up	0,992
Taxi	0,996
Decolagem	0,996
Subida 1	0,99
Cruzeiro 1	0,993915
Subida 2	0,99
Cruzeiro 2	0,903098
Descida 1	0,992
Espera	0,998109
Descida 2	0,992
Aproximação	0,995944
Taxi	0,992

Tabela 5.8 - Fração mássica da missão

O produto das frações leva ao seguinte valor:

 $\Pi M_{ff} = 0,8276$

Assim, o peso de combustível pode ser calculado.

$$W_{fused} = (1 - 0.8276) \cdot W_{TO}$$

Desta forma:

 $W_{fused} = 644,56 kg$

Estabelecendo uma reserva de combustível de 13%, obtém-se:

 $W_{f reserva} = 83,8 kg$

O peso de combustível total é de:

 $W_f = W_{f used} + W_{f reserva} = 728,35 kg$

Passo 4: Cálculo de uma tentativa de peso mínimo operacional

O valor do peso mínimo operacional é expresso por:

 $W_{OE} = W_{TO} - W_F - W_{PL}$

Substituindo os valores: WOE = 2426,5kg

Passo 5: Cálculo de uma tentativa de peso vazio

O peso vazio é a soma do peso mínimo operacional com o peso dos fluidos operacionais, e o peso da tripulação. Determina-se um peso de tripulação igual a 185,97kg. O peso dos fluidos foi estipulado em 0,5% do peso máximo. Assim:

$$W_{\rm E} = W_{\rm OE} - W_{\rm TFO} - W_{\rm CREW}$$

 $W_E = 2053,53$ kg

Passo 6: Verificação de W_E estimado

Pela equação logarítmica que relaciona W_{TO} a W_E , pode-se verificar se o valor do peso vazio estimado corresponde ao peso obtido pela equação. Assim:

Peso	Valor
W_{TO} (da tentativa inicial) / kg	3740
W _E estimado / kg	2053,53
W _E calculado / kg	2053,71
Diferença / %	0,008

Tabela 5.9 - Comparação do peso vazio calculado com o estimado

Como a diferença entre os pesos é de 0,008%, pode-se afirmar que o peso total da aeronave, numa primeira estimativa, é de 3740kg.

Resumindo os resultados obtidos pela estimativa de peso:

Peso	Valor
Peso máximo de decolagem W _{TO} / kg	3740
Peso vazio W _E / kg	2053,53
Peso operacional mínimo W_{OE} / kg	2426,5
Peso do combustível W _F / kg	728,35
Peso dos fluidos operacionais W_{TFO} / kg	187,0
Peso da tripulação W_{CREW} / kg	185,97
Carga paga W_{PL} / kg	585,13

Tabela 5.10 - Resumo dos pesos

6 Gráficos de W/P X W/S

Os gráficos de W/P X W/S tem a função de auxiliar o projeto preliminar da aeronave para que ela atenda certos pré-requisitos. Ele se baseia em dados estatísticos de outras aeronaves permitindo, via comparação, a obtenção de certos parâmetros de projeto como área da asa, potência e Coeficiente de sustentação máximo.

A metodologia para o desenvolvimento do presente capítulo foi baseada em Roskan [1].

6.1 Velocidade de Estol

Para algumas aeronaves a missão demanda que a velocidade de estol não seja maior que uma velocidade mínima. Portanto em tais casos a especificação da missão irá incluir uma estimativa requerida baseada em uma velocidade de estol mínima.

A norma FAR 23 especifica que, para aeronaves bimotores com W_{TO} (peso máximo de decolagem) < 6.000 lbs a velocidade de estol não deve ser maior que 61 Kts (velocidade de estol referida à configuração com Flap não estendido ou com o mesmo estendido sendo de critério do projetista).

A velocidade de estol com "Power off" pode ser determinada a partir da seguinte equação 6.1

$$Vs = (2 (W/S)) / \rho C_{Lmáx})^{1/2}$$
(6.1)

A partir da especificação da velocidade de estol permitida em uma determinada altitude a equação define a máxima carga alar permitida para um dado valor de $C_{Lmáx}$.

A tabela abaixo especifica valores típicos de CLmáx para aeronaves bimotores.

Tabela 6.1 - Faixa de C_L

Tipo do avião	C _{Lmáx}	C _{Lmáx} TO	CL máx L
Bimotor	1,2 a 1,8	1,4 a 2,0	1,6 a 2,5

Para a presente aeronave o peso de decolagem W_{TO} foi obtido sendo de 8245.29lbs. As velocidades de estol foram obtidas sendo 70Kts para condição de pouso e 110Kts para cruzeiro não violando a norma uma vez que o peso de decolagem está acima de 6000 lbs.A partir de 4 valores de C_Lmáx estimados foram obtidas as respectivas razões W/S. Como, para velocidade de estol W/S independe de W/P o gráfico resultante são linhas retas nos valores de W/S para cada valor de CLmáx conforme mostrado a seguir. Assim tem-se as seguintes situações:

a) Velocidade de estol para pouso (Power off)

Velocidade de Stall (power-off) de pouso - 5000ft						
Vs	129.64	km/h	70	knot	118.1467	ft/s
Cl max - 1	1.8		W/S - 1	25.7411	25.74113	
CI max - 2	2		W/S - 2	28.6013	28.60125	
CI max - 3	2.2		W/S - 3	31.4614	31.46138	
Cl max - 4	2.4		W/S - 4	34.3215	34.3215	
W/P	0					
	50					

Tabela 6.2 - Velocidade de estol

Figura 6.1 - Velocidade de estol de pouso

b) Velocidade de estol para cruzeiro (Power off)

Velocidad	Velocidade de Stall Cruzeiro (power-off) - 25000ft					
W/S=(1/2pV ²	²)Clmáx					
Vs	203.72	km/h	110	knot	185.6591	ft/s
Cl max - 1	1.4		W/S - 1	25.8175	25.8175	
Cl max - 2	1.6		W/S - 2	29.50572	29.50572	
Cl max - 3	1.8		W/S - 3	33.19393	33.19393	
Cl max - 4	2		W/S - 4	36.88215	36.88215	
W/P	0					
	50					

Tabela 6.3 - Velocidade de estol cruzeiro 25000 ft

Figura 6.2 - Velocidade de estol cruzeiro 25000 ft

6.2 Distância de decolagem

Para o cálculo da distância de decolagem, inicialmente foi utilizado o FAR-Part 23 como norma para os parâmetros estabelecidos. Seguindo esta norma, temos que:

- Peso de Decolagem (W_{to});
- Velocidade de decolagem (V_{to});
- Razão peso-potência (W/P)_{to};

Uma série de parâmetros serão calculados em cascata, para que se chegue na relação

$$\left(\frac{W}{S}\right)_{TO} \times \left(\frac{W}{P}\right)_{TO}.$$

A figura 6.3 ilustra os parâmetros necessários à obtenção da distância de decolagem

Figura 6.3 - Distância de decolagem

Onde

Stog – Distância de corrida de decolagem no solo

Sto – Distância de decolagem

Inicialmente foi estipulado o parâmetro de decolagem do FAR 23 "TOP 23" para o avião em questão. Com este valor de TOP₂₃, e utilizando a equação 6.2, determinou-se a distância percorrida em solo para a decolagem (S_{TOG}).

$$S_{top} = 4.9 \times TOP_{23} + 0.009 \times TOP_{23}^{2}$$
(6.2)

A partir da equação 6.3 determinou-se Sto.

$$Sto = 1,66 \text{ x Stog} \tag{6.3}$$

Achado o S_{TOG}, basta substituir o mesmo na equação 6.4 e determinar a relação $\left(\frac{W}{S}\right)_{TO} \times \left(\frac{W}{P}\right)_{TO}$ para diversos C_L.

$$W/P = \frac{Top23*\sigma*C_L}{W/S}$$
(6.4)

Assim obtem-se a tabela VI.3 e a figura 6.4 como abaixo:

Distância de decolagem (Sto) - Sea Level					
Sto	904.41	78 m	2967.25 ft		
Stog	544.8	3 m	1787.5ft		
Top23	25	0			
CI to = CI max to	σ=1				
W/P = (Top23*(o					
CI max to - 1	1.4	1.4 Cl to - 1			
CI max to - 2	1.6	1.322314			
CI max to - 3	1.8	CI to - 3	1.487603		
CI max to - 4	2	CI to - 4	1.652893		

Tabela 6.4 - Distância de decolagem Sto (Sea Level)

Figura 6.4 - Distância de decolagem

6.3 Distância de Pouso

A distância de pouso de uma aeronave é determinada pelos quatro fatores abaixo:

• Peso de pouso (W_L)

- Velocidade de aproximação (V_A)
- Método de desaceleração
- Qualidades de vôo da aeronave
- Técnica de pilotagem

Após o toque da aeronave as seguintes soluções de desaceleração podem ser usadas:

- Freios
- Reversos
- Pára-quedas
- Ganchos

Para a presente aeronave serão utilizados apenas os sistemas de freios de rodas e sistema de reversão de tração baseados na variação do ângulo de ataque da pá da hélice.

A figura 6.5 apresenta a definição para as distâncias usadas para a estimativa da distância de pouso.

Figura 6.5 - Distância de pouso

Onde: SLG - Distância de corrida no solo

S_L - Distância de pouso

A velocidade de aproximação é especificada através da equação 6.5.

$$V_A = 1.3 \times V_{s_L} \tag{6.5}$$

Onde: V_{SL} – Velocidade de stall no pouso a 5000ft = 75kts (estimada no cálculo de velocidade de stall no pouso a 5000 ft). Assim V_A = 97,5kts

O valo de S_{LG} pode ser obtido através da equação 6.6.

$$S_{LG} = 0.265 * V_{SL}^2$$
(6.6)

Assim $S_{LG} = 1490,625$ ft

A distância de pouso S_L é dada pela equação 6.7:

$$S_L = 1,938*S_{LG}$$
 (6.7)
Assim $S_L = 2888,83$ ft

Pode-se, então obter a fórmula para "W/S" para alguns valores de C_L dada pela equação 6.8.

$$\frac{W}{S} = \frac{\rho * 2.85 * S_{LG} * C_L}{2 * 0.265}$$
(6.8)

Onde: $\rho = 0,00205 \text{ slug/ft}^3$

Fator de conversão de Knots ² para $(ft/s)^2 = 2,85$

Assim obtém-se as tabelas VI.4 e VI.5 a figura 6.6 como abaixo:

Distância de Pouso (SI) - 5000ft					
Slg = 0,265	5 Vsl^2	Va = 1,3Vsl			
SI = 1,938SIg					
Vsl	75	knot	126,5857	ft/s	
Va	97,5	knot	164,5615	ft/s	
Slg	1490,625	ft	454,3425	m	
SI	2888,831	ft	880,5158	m	
WI/Wto	1				

Tabela 6.5 - Distância de pouso 5000ft

Tabela 6.6 - C_L x W/S

		W/S	
C∟		(lbs/ft ²)	
	1,8	29,57085	
	2	32,8565	
	2,2	36,14215	
	2,4	39,4278	

Figura 6.6 - Distância de pouso 5000ft

6.4 Razão de subida

As especificações de subida são baseadas em duas condições de vôo; decolagem e arremetida.

Para a subida na decolagem, existem duas condições a serem analisadas conforme FAR 23.65 (AEO = todos os motores operando) e FAR 23.67 (OEI = com um motor inoperante).

De acordo com o FAR 23.65, todas as aeronaves terrestres devem ter uma razão de subida ao nível do mar de pelo menos 300 fpm, e um gradiente de subida de pelo menos 1:12 na seguinte configuração:

- Potência inferior à potência contínua máxima em todos os motores;
- Trem de pouso recolhido;
- Flaps na condição de decolagem;
- Cowl flaps de acordo com o sistema de resfriamento do motor (FAR 23.1041-1047).

De acordo com o FAR 23.67, para aeronaves com mais de um motor, e com o peso máximo de decolagem superior a 6000 lbs, deve-se ter uma razão de subida de pelo menos $0,027 \text{ Vso}^2$ [fpm], a 5000 ft de altitude, onde V_{so} é dado em kts.

Estes requisitos se aplicam a aeronave na seguinte configuração:

- Um motor inoperante com a hélice na posição de arrasto mínimo (embandeirada);
- O motor em funcionamento com a potência abaixo da potência máxima contínua;
- Trem de pouso recolhido;
- Flaps na condição mais favorável;
- Cowl flaps de acordo com o sistema de resfriamento do motor (FAR 23.1041-1047).

6.5 FAR 23.65 (AEO)

Antes de estimar a razão de subida, torna-se necessário incluir os acréscimos de arrasto parasita para determinadas configurações da aeronave sugeridas por Roskan [1]. Além disso, o termo dependente do arrasto induzido será modificado em função das alterações do fator de Oswald para as condições de decolagem e pouso, conforme tabela VI.6.

Razão de Subida (ΔCdo; e)			
	Δcdo	е	
Limpo	0	0,8	
Flap decolagem	0,015	0,78	
Flap pouso	0,06	0,7	
Trem de pouso	0,02	-	
Hélice Inoperante	0,005	-	

Tabela 6.7 - Razão de subida

Estimando uma razão de subida de 1200 ft/min, e utilizando a equação 6.9, obtém-se o valor de $R_{cp} = 0,036364$ hp/lb.

$$R_{cp} = \frac{R_c}{33000}$$
(6.9)

Utilizando a polar de arrasto original e os acréscimos estabelecidos pelo FAR 23.65 (AEO) conforme a tabela VI.6, obtém-se a tabela VI.7 já incluídos os valores de R_c e R_{cp}. Para maximizar a razão de subida é necessário que a razão ($C_L^{3/2}/C_D$) seja a maior possível. Para atender este requisito a equação 6.10 fornece o valor de ($C_L^{3/2}/C_D$)_{máx}.

$$(C_{L}^{3/2}/C_{D})_{max} = 1,345^{*}(Ae)^{3/4}/(Cd_{0})^{1/4}$$
(6.10)

Razão de Subida (AEO) - 5000ft					
Rc	1200	ft/min	ηр	0,82	
Rcp	0,036364	hp/lbs			
Cdo Rc AEO	0,028071				
e - Rc AEO	0,78				
k - Rc AEO	0,039852				
((Cl^3/2)/Cd)max	15,61188				

Tabela 6.8 - Razão de subida (AEO) 5000 ft

Para a faixa de W/S de 0 a 50 lbs/ft^2 foram calculados os valores de W/P_{max contínuo} através da equação 6.11.

$$\frac{W}{P} = \frac{\eta_P}{Rcp + \frac{(W/S)^{1/2}}{19(C_L^{3/2}/C_D)\sigma^{1/2}}}$$
(6.11)

Para se obter W/P_{to}, utiliza-se a equação 6.11 lembrando que o $P_{to} = 1,03 P_{max \text{ contínuo}}$. Esta relação foi obtida dos dados do fabricante do motor. Assim obtém-se a figura 6.7 conforme abaixo.

Figura 6.7 - Razão de subida AEO

6.6 FAR 23.67 (OEI)

Para a operação com apenas um motor, e a partir da velocidade de stall para esta condição, V_{so} =85 knots, obteve-se a razão de subida mínima a partir da equação 6.12.

$$R_{c \min} = 0.027 * Vso^2$$
(6.12)

Assim $R_{c min} = 195,075$ ft/min

Estimando uma razão de subida de $R_c = 530$ ft/min, pode-se determinar R_{cp} através da equação 6.9. Utilizando a polar de arrasto original e os acréscimos estabelecidos pelo

FAR 23.67 (OEI) conforme a tabela VI.6, obtém-se a tabela VI.8 já incluídos os valores de R_c e R_{cp} .

Razão de Subida (OEI) - 5000ft					
Vso	85	knot	ηр	0,82	
Rc min	195,075	ft/min			
Rc	530	ft/min			
Rcp	0,016061	hp/lbs			
Cdo Rc OEI	0,018071		W/P (OEI)	24,25085	lbs/hp
e - Rc OEI	0,8				
k - Rc OEI	0,038856				
((Cl^3/2)/Cd)max	17,7632				

Tabela 6.9 - Razão de subida OEI 5000ft

Utilizando a equação 6.11, e variando W/S de 0 a 50 lbs/ft^2 , determina-se W/P e chegando-se a figura 6.8.

Figura 6.8 - Razão de subida (OEI) a 5000ft

6.7 Gradiente de subida

6.7.1 FAR 23.65 (AEO) – Gradiente de Subida

Na condição de gradiente de subida com todos os motores funcionando, FAR 23.65, deve-se ter a configuração da aeronave conforme a seguir:

- Trem de pouso recolhido;
- Flaps na condição de decolagem;
- Potência máxima contínua dos motores.

A polar de arrasto neste caso se enquadra na condição da norma referida acima, obtendo como valores o fator de Oswald e = 0,78 e $C_{do} = 0,028071$. Para esta condição é utilizado como coeficiente de subida, $C_{Lclimb} = 1.9$.

A equação 6.13 fornece o valor parâmetro de gradiente de subida;

$$CGRP = \frac{\left\{ CGR + (L/D)^{-1} \right\}}{C_L^{1/2}}$$
(6.13)

onde CGR = 1/12 (FAR 23.65); D/L = C_D/C_L = 0,09 (obtido da polar para esta condição)

Substituindo os valores na equação 6.14, obtém-se os valores de W/P para o W/S variando de 0 a 50 lbs/ft².

$$\frac{W}{P} = \frac{18,97 \times \eta_p \times \sigma^{\frac{1}{2}}}{CGRP \times \left(\frac{W}{S}\right)^{1/2}}$$
(6.14)

Assim obtém os valores da tabela VI.9;

Gradiente de Subida			
CGR	0,083333		
1/πAe	0,039852		
Cdo	0,028071		
CI	1,9		
Cd	0,171938		
CGRP	0,126107		
18.97*np/CGRP	123,3504		

Tabela 6.10 - Gradiente de subida

Com os valores encontrados para o valor de W/P_{max continuo} em função de W/S, obtém a figura 6.9. Para os valores da relação peso potência na decolagem, tem-se W/P_{to} = 1,03 x W/P_{max continuo}.

Figura 6.9 - Gradiente de subida

6.7.2 FAR 23.77 (AEO) - Arremetida

Para a condição de arremetida com todos os motores funcionando, o FAR 23.77 estipula que o gradiente de subida deve ser de pelo menos 1:30 com a aeronave na seguinte configuração:

- Potência de decolagem nos motores;
- Trem de pouso abaixado e travado; •
- Flaps na posição de pouso. •

Para esta condição, CGR = 1/30 (FAR 23.77), obtém-se os novos valores para nova condição estabelecida. O gráfico W/P versus W/S, figura 6.11, para a condição de arremetida é encontrado atribuindo valores de CL, conforme a tabela VI.10, VI.11, VI.12 e VI.13.

Arremetida C _L =1,8			
CGR	0,033333		
1/πAe	0,038856		
Cdo	0,093071		
CI	1,8		
Cd	0,218965		
CGRP	0,115516		
18.97*ηp/CGRP	134,6606		

Arremetida C _L =2			
CGR	0,033333		
1/πAe	0,038856		
Cdo	0,093071		
CI	2,0		
Cd	0,248495		
CGRP	0,111427		
18.97*ηp/CGRP	139,6022		

Arremetida		
CGR	0,033333	
1/πAe	0,038856	
Cdo	0,093071	
CI	2,2	
Cd	0,281135	
CGRP	0,108628	
18.97*ηp/CGRP	143,1984	

Arremetida C _L =2,4			
CGR	0,033333		
1/πAe	0,038856		
Cdo	0,093071		
CI	2,4		
Cd	0,316882		
CGRP	0,106744		
18.97*ηp/CGRP	145,7258		

Figura 6.10 - Arremetida

6.8 Velocidade de cruzeiro

Como requisito de projeto a velocidade de cruzeiro deve ser de 450km/h (ou 279,62 mph).

A partir figura 3.28 de Roskan [1], pode-se obter o valor do índice de potência "Ip" como sendo de 1,6.

Para a faixa de valores de W/S variando de 0a50lb/ft² pode-se obter W/P a partir da equação 6.15:

$$W/P = \frac{W/S}{\sigma^* I p^3} \tag{6.15}$$

Assim a partir das condições acima tem-se a tabela VI.13 e a figura 6.11.

CRUZEIRO				
Vcr	450	km/h		
Vcr	410,105	ft/s		
Vcr	242,98	knots		
Vcr	279,617	mps		
Lp	1,6			

Tabela 6.12 - Cruzeiro

Figura 6.11 - Velocidade de cruzeiro

A partir de todos os gráficos obtidos anteriormente, para cada requerimento de projeto, obteve-se o gráfico final W/P x W/S dado pela figura 6.12 e a determinação do ponto de operação da aeronave em projeto, dado por (W/S = 30,6405 lb/ft2, W/P = 12,12542 lb/hp). Tal ponto se torna relevante, visto que a partir dele inicia-se a definição das primeiras dimensões da aeronave de tal forma que a mesma atenda os requisitos propostos.

Figura 6.12 - Gráfico W/P x W/S final

7 ESTUDO DAS PROPORÇÕES

Visando-se obter uma aeronave com boas qualidades de vôo, terminado o esboço inicial, é conveniente fazer-se um estudo comparativo da proporcionalidade das dimensões básicas da aeronave em desenvolvimento.

Para isso, selecionam-se as aeronaves cujas formas mais se aproximam da aeronave em desenvolvimento e que sejam, reconhecidamente, detentoras de boas qualidades de vôo. Em seguida, elaboram-se tabelas contendo as principais proporções geométricas destas aeronaves e as respectivas proporções da aeronave em desenvolvimento. Na medida em que houver desproporção, volta-se ao esboço inicial, fazendo-se as modificações convenientes.

É interessante que as seguintes proporções sejam analisadas:

- Razão entre o braço da empenagem horizontal e a corda geométrica média (L_h/c);
- Razão entre o braço da empenagem vertical e a envergadura (L_v/b) ;
- Razão entre o comprimento e a envergadura (L/b);
- Razão entre as envergaduras da asa e a empenagem horizontal (b/b_h);
- Razão entre a corda geométrica média da asa e o comprimento da fuselagem (c/L_f);
- Razão entre a área do profundor e a área da empenagem horizontal (S_{prof}/S_h);
- Razão entre a área do leme e a área da empenagem vertical (S_{leme}/S_v) ;
- Volume de cauda vertical e horizontal $V_h = \frac{S_h \cdot L_h}{S \cdot c}$ e $V_v = \frac{S_v \cdot L_v}{S \cdot b}$.

Foram selecionadas 9 aeronaves da tabela comparativa para realizar o estudo das proporções. Os resultados estão listados nas tabelas abaixo.

	TT62	Dawa 50	P180	DA 21T	Dula D(0
	Alekto	Baron 38	Avanti	PA-311	Duke Bou
L / m	11,52	9,09	14,17	10,57	10,31
L_v / m	2,60	0,70	2,01		1,19
L_h / m	6,69	4,55	5,46	5,76	5,19
b / m	11,24	11,53	13,84	13,01	11,97
b _h / m	4,46	4,85	3,95	6,05	5,18
c / m	1,27	1,57	1,21	1,93	1,35
S / m ²	14,03	17,48	15,76	21,3	19,78
S _{prof} / m ²	1,14	1,65	1,35	2,63	1,52
S _{leme} / m ²	0,6	0,81	1,05	0,98	1,15
S_h / m^2	2,66	5,11	2,485	6,55	4,24
$S_v \ / \ m^2$	2,4	1,46	3,68	1,48	1,52
L_v / b	0,23	0,06	0,14		0,10
L_h / c	5,27	2,90	4,51	2,98	3,84
L / b	1,02	0,78	1,02	0,81	0,86
b _w / b _h	2,52	2,37	3,50	2,15	2,31
c / L	0,11	0,17	0,08	0,18	0,13
S_{prof} / S_h	0,42	0,32	0,54	0,40	0,35
S _{leme} / S _v	0,25	0,55	0,28	0,66	0,75
V _h	0,99	0,84	0,71	0,91	0,82
V _v	0,0396	0,0051	0,0340		0,0076

Tabela 7.1 - Tabela de proporções

Tabela	7.2 -	Tabela	de	proporções
--------	-------	--------	----	------------

	Cheyenne 400	UM-2L	Seneca V
L / m	13,23	12,01	8,72
L_v / m	3,15	0,62	0,66
L_h / m	7,35	5,61	4,93
b / m	14,53	11,49	11,85
b_h / m	6,65	4,8	4,14
c / m	2,04	1,54	1,8
S / m ²	27,22	16,55	19,39
S _{prof} / m ²	2,26	1,39	

S _{leme} / m ²	1,6	1,17	0,71
S_h / m^2	3,48	4,02	3,6
S_v / m^2	2,68	2,85	1,14
L_v / b	0,21	0,054	0,055
L_h / c	3,60	3,64	2,73
L / b	0,91	1,04	0,73
b_w / b_h	2,18	2,39	2,86
c / L	0,15	0,12	0,20
S_{prof} / S_h	0,64	0,34	
S _{leme} / S _v	0,59	0,41	0,62
V _h	0,46	0,88	0,50
V _v	0,0214	0,0093	0,0032

Para a aeronave em questão, os valores de envergadura e área alar já são conhecidos. A corda média é obtida dividindo o valor da área pela envergadura. Valores para o comprimento do avião, dos braços vertical e horizontal foram estimados. Algumas proporções para o avião a ser projetado foram estimadas baseando-se nas aeronaves da tabela comparativa. Também foi necessário escolher um coeficiente de volume de cauda horizontal e um coeficiente de volume de cauda vertical. Tais coeficientes foram determinados a partir da tabela comparativa, levando como base as aeronaves que mais se assemelham ao avião em projeto. Os valores estão listados abaixo:

Dimensões	Valor
Envergadura / m	16
Área alar / m ²	25
Comprimento / m ²	13
Envergadura da	15
empenagem horizontal / m	4,3
Corda média da asa / m	1,56
Distância entre c.a.'s na	2.1
vertical / m	2,1
Distância entre c.a.'s na	15
horizontal / m	4,5
Área da empenagem	3,1

Razões	Valor
L / b	0,8125
b / b _h	3,55
Lv / b	0,13
Lh / c	2,88
c / L	0,12
Vh	0,613
Vv	0,0162
Sprof / Sh	0,3

vertical / m ²	
Área da empenagem	5 32
horizontal / m ²	5,52
Área do profundor / m ²	1,59
Área do leme / m ²	0,93

Sleme / Sv	0,3

Porém as áreas das empenagem foram obtidas considerando uma empenagem convencional. Mas a empenagem a ser usada será do tipo V. É necessário então, fazer as projeções para obter o tamanho da empenagem real.

Figura 7.1 - Projeções da empenagem V

A dimensão 'a' será calcula a partir das fórmulas abaixo:

$$b_{h} = 2 \cdot a \cdot \cos(\alpha)$$

$$b_{h} = a \cdot sen(\alpha)$$

$$S_{h} = 2 \cdot a \cdot c_{t} \cdot \cos(\alpha)$$

$$S_{v} = a \cdot c_{t} \cdot sen(\alpha)$$

Onde c_t é a corda média da empenagem e α é o ângulo que faz as linhas 'a' e $b_h/2$. Estabeleceu-se uma corda igual a 1,1836m. O ângulo da empenagem de forma a garantir as dimensões das tabelas X.3 e X.4 é de 119,59°. Assim, substituindo os valores de b_h e α nas equações acima, conseguem-se os seguintes valores:

a = 2,603m $b_v = 1,309m$

Resta definir o tamanho do profundor e do leme. O cálculo destas superfícies deve levar em conta o fato da empenagem em V possuir apenas uma superfície móvel que por sua vez faz o papel de ambos. Assim é necessário trabalhar as projeções da superfície de comando da empenagem de forma a garantir os tamanhos corretos de leme e profundor. Este estudo levará em conta o seguinte:

- A área do leme é igual a 0,3 vezes a área da projeção vertical da superfície móvel;
- A área do profundor é igual a 0,3 vezes a área da projeção horizontal da superfície móvel;
- Ambas as projeções possuem a mesma corda, e que obviamente é igual à corda da superfície móvel;
- O ângulo entre projeções é o mesmo da empenagem toda;
- A corda da superfície móvel é metade da corda da empenagem toda;
- As áreas do profundor e do leme estão de acordo com a tabela VII.3.

Desta forma, obtêm-se os seguintes resultados:

c = 0,5918m

x = 1,562m

Onde 'c' é a corda da superfície móvel e 'x' o comprimento da mesma medido na linha 'a' da figura 7.1.

8 DEFINIÇÃO DA AERONAVE

8.1 Configuração externa

A escolha da configuração externa de uma aeronave é uma decisão qualitativa. Esta escolha deve levar em consideração qual é a função da aeronave, seus requisitos de projeto, o desempenho esperado e deve-se considerar também o ponto de vista estético. A seguinte configuração foi escolhida:

8.1.1 Asas

Realizada a estimativa de peso preliminar, alguns parâmetros geométricos da asa ficaram fixados. A área alar ficou em 25m², e a envergadura em 16m. A partir destes dados é possível esboçar a forma da asa. Optou-se por uma asa trapezoidal, pois sob o ponto de vista estrutural, apresenta vantagens em relação às demais formas. O problema de estol de ponta inerente a esse tipo de asa foi resolvido com a escolha de aerofólios diferentes na ponta e na raiz. Quanto à posição da mesma, optou-se por uma asa baixa por permitir melhor visibilidade durante o pouso e menor altura da cabine. A asa foi enflechada em 5º pelo fato do CG estar localizado em uma posição um pouco traseira no avião. Para melhorar a estabilidade, estimou-se um valor de diedro igual a 2º. A corda do aileron foi estimada em 20% da corda média aerodinâmica. Os flapes, determinados a partir de simulações, obtiveram uma corda equivalente a 25% da CMA. O afilamento escolhido foi de 0,68., garantindo que o estol de inicie na raiz da asa.

Figura 8.1 - Vista em planta da asa

8.1.2 Cauda

A empenagem escolhida para o avião foi do tipo em "V". Esta escolha foi tomada em virtude desta configuração apresentar um design atraente e pelo fato de ser mais fácil para construir. O ângulo da empenagem é de 119°, estando dentro dos valores recomendáveis de 90° a 120°. As áreas foram determinadas de forma a obedecer os volumes de cauda especificados. O volume de cauda vertical é de 0,016 e o horizontal, 0,54; ficando dentro da faixa correspondente aos aviões de mesma categoria.

8.1.3 Trem de pouso

O trem de pouso da aeronave é do tipo triciclo retrátil. Esta configuração proporciona baixíssimo arrasto, boa visibilidade no táxi e maior facilidade na hora de pousar o avião. A altura do trem de pouso é de 1m em relação ao chão e a fuselagem.

8.2 Configuração interna

A definição da configuração interna da aeronave requer um estudo de posicionamento das cadeiras para o caso em que o avião possui seis assentos e para o caso em que possui quatro assentos. A figura Y mostra o arranjo final para os dois casos, onde as medidas utilizadas foram retiradas de tabelas presentes no livro Roskam (Vol.3).

Para a configuração de 4 lugares foram utilizados assentos equivalentes aos de primeira classe de aviões de grande porte, proporcionando desta forma o conforto pelos passageiros para um avião desta classe.

Para a configuração de 6 lugares foram utilizados assentos equivalentes aos da classe executiva de aviões de grande porte.

Com este estudo em mãos foi possível determinar o comprimento requerido pela fuselagem para que a aeronave fosse capaz de transportar com conforto o número requerido de passageiros.

Figura 8.2 - Arranjo interno da aeronave para as versões de 4 e 6 assentos

Figura 8.3 - Vista em corte da seção da aeronave

Houve também a necessidade de analisar o posicionamento dos pilotos no cockpit, para garantir que os ângulos mínimos de visão sejam atendidos. A figura 8.4 ilustra o estudo que foi realizado, indicando quais foram os ângulos encontrados para a aeronave em questão. Todo este estudo foi feito com base no livro Roskam (Vol.3).

Figura 8.4 - Estudo do posicionamento dos pilotos no cockpit

8.3 Escolha do grupo moto-propulsor

Uma vez definido o ponto de operação no gráfico das curvas W/S x W/P, obtém-se da razão W/P a potência de eixo necessária. Desta forma a potência total é de 680HP. Isto

significa que cada motor terá que fornecer uma potência de 340HP. Para atender esta potência requerida, emprega-se o motor turbodiesel Centurion 4.0. Este motor apresenta uma potência de 350HP, rotação igual a 2300rpm e cilindros em V.

Figura 8.5 - Vista frontal do motor

9 PERFILAGEM

9.1 Determinação do perfil da asa

O estudo necessário para determinar o melhor perfil aerodinâmico para a aeronave se inicia a partir do cálculo do número de Reynolds da asa. A expressão do número de Reynolds está apresentada abaixo:

$$\operatorname{Re} = \frac{\rho \cdot V \cdot D}{\mu}$$

Onde:

ρ = densidade do ar
μ = viscosidade dinâmica do ar
V = velocidade da asa
D = comprimento característico (no caso da asa, a corda geométrica)

Para a altitude de cruzeiro da aeronave em projeto (25000ft e atmosfera ISA) tem-se:

 $\rho = 0,0010663$ lb.sec²/ft⁴ $\mu = 3,2168$ lb.sec/ft²

Como a aeronave voa a uma velocidade de 450km/h durante o cruzeiro:

V = 410, 10ft/s

A corda geométrica média da asa é obtida dividindo a área alar pela envergadura: Assim:

$$c = \frac{S}{b} = \frac{296,068\,ft^2}{52,49\,ft} = 5,12\,ft$$

Substituindo estes valores na equação do Reynolds, obtém-se:

 $\text{Re} \cong 6,9x10^6$

Este valor médio de Reynolds será utilizado nas simulações computacionais do *software* XFOIL. É necessário também calcular o número de Mach para um vôo a 410ft/s na altitude de cruzeiro.

$$M = \frac{410,10\,ft/s}{1016,1\,ft/s} = 0,40$$

Outro parâmetro pertinente é o coeficiente de sustentação de projeto. Este valor é calculado como se segue:

$$C_L = \frac{2 \cdot W}{\rho \cdot V^2 \cdot S}$$

Onde:

W - Peso da aeronave com máximo carregamento

ρ - Peso específico do ar

S - Área da asa

V - Velocidade de cruzeiro

Assim:

 $C_L = 0.34$

Definidas todas as variáveis necessárias para o estudo do perfil aerodinâmico, é interessante criar uma tabela comparativa apresentando vários perfis de famílias diferentes visando a escolha daquele que apresente o melhor desempenho voando nas

condições apresentadas acima. Para a aeronave em questão, as seguintes famílias serão avaliadas:

- NACA série 6: apresentam baixíssimos coeficientes de arrasto aliando boas características de estol;
- NASA LS: apresentam altos coeficientes de sustentação e baixo arrasto;
- NASA NLF: apresentam altas razões de L/D.

A tabela comparativa deve incluir os seguintes itens para comparação:

- C_{Lmax} do perfil;
- L/D_{max} do perfil;
- $L^{1,5}/D_{max}$ do perfil;
- L/D na velocidade de cruzeiro;
- L^{1,5}/D na velocidade de cruzeiro;
- Ângulo de estol;
- Espessura relativa;
- $\frac{\partial C_{L}}{\partial \alpha}$ do perfil.

Além do mais, deve-se avaliar o tipo de estol do perfil, ou seja, se este possui estol suave ou abrupto. Realizadas as devidas simulações computacionais, os seguintes resultados foram obtidos:

Perfil	C _{Lmax}	L/D _{max}	L ^{1,5} /D _{max}	L/D	L ^{1,5} /D	α stall	t/c	$dC_L/d\alpha$
NACA 66-021	1,01	93,64	56,22	93,11	55,09	16,8	0,21	0,132
NACA 64-012	1,17	95,62	95,51	55,76	32,92	10	0,1196	0,127
NACA 64(2)-015	1,28	95,90	95,27	63,15	37,21	13,5	0,1496	0,131
NACA 63(3)-018	1,46	100,77	108,50	72,00	42,59	15,5	0,1801	0,136
NACA 63(3)-418	1,66	161,55	155,28	76,81	45,35	15,7	0,1799	0,136
NACA 63(2)-215	1,45	109,62	109,18	79,27	46,65	13,8	0,15	0,132
NACA 65(2)-415	1,08	109,19	86,03	75,20	44,13	11,8	0,15	0,127

Tabela 9.1 - Tabela comparativa dos perfis NACA

Perfil	C _{Lmax}	L/D _{max}	L ^{1,5} /D _{max}	L/D	L ^{1,5} /D	α stall	t/c	$dC_L/d\alpha$
LS(1)-421	1,95	123,91	111,03	75,52	45,47	18,4	0,209	0,127
LS(1)-417MOD	2,07	153,31	188,31	52,98	31,09	14,3	0,17	0,136
LS(1)-417	2,00	117,59	131,55	72,82	43,32	16,4	0,1699	0,127
LS(1)-421MOD	1,95	128,62	154,25	58,15	34,21	15	0,2096	0,142
LS(1)-413	1,93	120,99	132,52	69,92	41,05	13,6	0,1293	0,128

Tabela 9.2 - Tabela comparativa dos perfis NASA LS

Tabela 9.3 - Tabela comparativa dos perfis NASA NLF

Perfil	C _{Lmax}	L/D _{max}	L ^{1,5} /D _{max}	L/D	L ^{1,5} /D	α stall	t/c	$dC_L/d\alpha$
NLF(1)-414	1,63	175,31	127,77	112,93	66,17	13,7	0,1417	0,136
NLF(1)-115	1,52	115,34	119,37	87,20	51,50	16,3	0,1497	0,124
NLF(1)-416	1,72	166,16	127,77	67,96	39,97	12	0,1597	0,133
NLF(1)-215	1,76	216,22	226,66	54,87	32,26	17,3	0,1498	0,126
NLF(2)-415	1,30	190,15	152,44	101,83	59,74	12,1	0,1502	0,13

Uma análise minuciosa dos resultados leva à escolha do perfil LS-421 para a região da ponta da asa. Para a raiz, escolhe-se o perfil LS-417. É interessante observar que esta família de perfis também é encontrada em aviões da mesma categoria e que estão na tabela comparativa, tal como o recente Alekto . Os motivos para tal escolha foram os seguintes:

- Apresentam os maiores coeficientes de sustentação dentre os analisados, exigindo que se tenha flapes simples, facilitando o processo de fabricação da aeronave;
- Ângulo de estol alto;
- Espessura relativa alta. Para aeronaves que voam em altas altitudes, quanto maior a espessura relativa, menor o arrasto;
- O C_L de projeto se encontra na faixa de menor arrasto ao se analisar as polares destes perfis;
- Embora não obtivessem os maiores valores de L/D na velocidade de cruzeiro, estes perfis ainda apresentam uma boa relação em comparação aos demais;

• A escolha de dois perfis (um na asa, outro na ponta) foi feita de forma a prevenir que a ponta estole primeiro que a raiz, levando a uma condição indesejada na qual a aeronave carece de controle lateral.

As polares de arrasto para cada perfil são exibidas abaixo. Da mesma forma, as curvas $C_L \propto \alpha$ estão apresentadas para os perfis escolhidos.

Polar de arrasto do perfil LS-417

Figura 9.2 - Polar de arrasto do perfil LS-421

Figura 9.3 - Curva C_L x α do perfil LS-417

Figura 9.4 - Curva $C_{\rm L}$ x α do perfil LS-421

9.2 Superfície de hiper-sustentação

Foram feitas simulações computacionais com o intuito de se achar o delta de coeficiente proporcionado pelo uso de flapes na asa. O valor de ΔC_L foi de 0,42, chegando a um C_{Lmax} de 2,32, atendendo aos requisitos de desempenho.

9.3 Determinação do perfil da empenagem

O perfil da empenagem é determinado da mesma forma que foi para a asa. Observa-se apenas que no caso da empenagem, procuram-se perfis com alto $\frac{\partial C_L}{\partial \alpha}$ e grande espessura relativa, pois no cálculo da estabilidade, o primeiro é de suma importância. Os seguintes perfis foram simulados no *software* XFOIL:

Perfil	C _{Lmax}	L/D _{max}	$L^{1,5}/D_{max}$	L/D	L ^{1,5} /D	α stall	t/c	$dC_L/d\alpha$
NACA 0012	1,45	113,79	123,61	59,42	34,55	12,20	0,12	0,125
NACA 0015	1,62	114,29	127,02	57,01	33,32	14,90	0,15	0,127
NACA 63012	1,22	96,82	98,28	55,81	32,83	10,40	0,12	0,120
NACA 63015	1,58	100,02	109,01	62,25	36,62	18,60	0,15	0,112
FX 71-150	1,04	81,55	76,06	49,10	28,81	11,20	0,15	0,128

Tabela 9.4 - Tabela comparativa dos perfis para empenagem

Optou-se pelo perfil NACA 0015 por ser simétrico, por possuir o maior C_{Lmax} , razoável ângulo de estol e L/D na velocidade de cruzeiro, maior relação L/D_{max}, espessura relativa adequada visando resistência estrutural já que a empenagem carrega a hélice, C_L de cruzeiro dentro do balde laminar e um bom $\frac{\partial C_L}{\partial \alpha}$ comparado aos demais.

Figura 9.5 – Polar de arrasto do perfil

NACA 0015

NACA 0015

10 REFINAMENTO DE PESO

Feita a estimativa de peso é necessário calcular o peso da aeronave de uma maneira mais refinada com o objetivo de se verificar o valor estimado e também de obter um valor mais próximo da realidade. Desta forma divide-se o avião em partes e calcula-se o peso de cada uma individualmente seguindo sugestões de cálculos apresentadas por diferentes autores.

O peso total foi dividio nas seguintes parcelas:

- Peso do acabamento interno;
- Peso do sistema de ar condicionado e anti-gelo;
- Peso da asa;
- Peso da aviônica;
- Peso da empenagem;
- Peso da fuselagem;
- Peso do sistema hidráulico;
- Peso dos controles;
- Peso do motor instalado;
- Peso do sistema elétrico;
- Peso do trem de pouso;
- Peso do sistema de combustível;
- Peso da carga paga
- Peso da tripulação
- Peso do combustível propriamente dito.

Na literatura se encontram muitas maneiras de se calcular estes pesos. A maior parte dos pesos dos componentes foi calculada seguindo as fórmulas apresentadas por Raymer [2]. Porém, em algumas vezes, os pesos obtidos ficaram demasiadamente altos quando comparando com os pesos de aeronaves semelhantes à do projeto. Por isso foram usadas fórmulas alternativas apresentadas por Roskan [3] e pela universidade de Stanford. Abaixo seguem os cálculos realizados:

10.1 Peso do acabamento interno

O peso de acabamento calculado usando a fórmula encontrada em Raymer [2] ficou muito alto para os padrões da aeronave. Por isso, preferiu-se calcular o peso do acabamento interno segundo recomendações feitas por Roskan [3], que diz que este peso pode ser obtido pela seguinte expressão:

 $W_{acabamento} = 0,412 \cdot Np^{1,145} \cdot W_{to}^{0,489}$

Onde Np é o número de assentos e W_{to} o peso máximo de decolagem.

10.2 Peso do sistema de ar condicionado e anti-gelo

O peso do sistema de ar condicionado é calculado segundo a fórmula encontrada em Raymer [2]. A fórmula está apresentada abaixo:

$$W_{\text{air conditioning}} = 0.265 W_{\text{dg}}^{0.52} N_p^{0.68} W_{\text{avionics}}^{0.17} M^{0.08}$$

- $S_w = \text{área alar};$
- W_{avionics} = peso da aviônica;
- Np = número de passageiros;
- W_{dg} = peso máximo da aeronave.

10.3 Peso da asa

Raymer [2] recomenda a expressão abaixo para o cálculo do peso da asa. O autor ainda recomenda um fator de 0,85 a ser multiplicado pelo resultado, pelo fato da asa ser de material composto.

$$W_{\rm wing} = 0.036 S_{\rm w}^{0.758} W_{\rm fw}^{0.0035} \left(\frac{A}{\cos^2 \Lambda}\right)^{0.6} q^{0.006} \lambda^{0.04} \left(\frac{100 \ t/c}{\cos \Lambda}\right)^{-0.3} (N_z W_{\rm dg})^{0.49}$$

Onde:

- $S_w = \text{área alar};$
- W_{fw} = peso do combustível;
- A = alongamento;
- q = pressão dinâmica;
- $\lambda = a filamento da asa;$
- Λ = enflechamento da asa;
- t/c = espessura relativa da asa;
- Nz = fator de carga admissível;
- W_{dg} = peso máximo da aeronave.

10.4 Peso da empenagem

O peso da empenagem é calculado segundo Raymer [2]. Calcula-se o peso da empenagem horizontal e soma-se ao peso da vertical. Um fator de correção de 0,83 é aplicado, por ser de material composto.

10.4.1 Peso da empenagem horizontal

$$W_{\text{horizontal}} = 0.016 (N_z W_{\text{dg}})^{0.414} q^{0.168} S_{\text{ht}}^{0.896} \left(\frac{100 \ t/c}{\cos\Lambda}\right)^{-0.12} \times \left(\frac{A}{\cos^2\Lambda_{\text{ht}}}\right)^{0.043} \lambda_h^{-0.02}$$

- $S_{ht} =$ área da empenagem horizontal;
- W_{fw} = peso do combustível;
- A = alongamento;
- q = pressão dinâmica;
- λ_h = afilamento da empenagem horizontal;
- Λ = enflechamento da asa;
- Λ_{ht} = enflechamento da empenagem horizontal;
- t/c = espessura relativa da asa;
- Nz = fator de carga admissível;
- W_{dg} = peso máximo da aeronave.

10.4.2 Peso da empenagem vertical

$$W_{\text{vertical}} = 0.073 \left(1 + 0.2 \frac{H_r}{H_v} \right) (N_z W_{\text{dg}})^{0.376} q^{0.122} S_{\text{vt}}^{0.873} \left(\frac{100 \ t/c}{\cos \Lambda_{\text{vt}}} \right)^{-0.49} \times \left(\frac{A}{\cos^2 \Lambda_{\text{vt}}} \right)^{0.357} \lambda_{\text{vt}}^{0.039}$$

- S_{vt} = área da empenagem vertical;
- Ht / Hv = 0.0 para empenagens convencionais e 1.0 para empenagens em T;
- W_{fw} = peso do combustível;
- A = alongamento;
- q = pressão dinâmica;
- λ_{vt} = afilamento da empenagem vertical;
- Λ_{vt} = enflechamento da empenagem vertical;
- t/c = espessura relativa da asa;
- Nz = fator de carga admissível;
- W_{dg} = peso máximo da aeronave.

10.5 Peso da aviônica

O peso da aviônica foi obtido discriminando cada componente que este sistema é composto. A tabela abaixo apresenta os pesos e o total:

Componentes:	Peso (lbs)	Quantidade	Peso (kg)	
GDU 1040 MFU & PDF	6,60	1	2,99	
GIA 63 INTEGRATED AVIONIC	S UNITS	4,90	1	2,22
GMA 1347 AUDIO PANEL		1,70	1	0,8
GDC 74A AIR DATA COMPUTE	R	1,69	1	0,77
GRS 77 AHRS	2,40	1	1,08	
GTX 33 MODE S TRANSPONDE	3,00	1	1,36	
GEA 71 ENGINE/AIRFRAME UNIT		1,75	1	0,712
	Total	22,04		9,93

Tabela 10.1 – Peso da aviônica

Componentes:	Peso(lbs)	Quantidade	Peso (kg)	
AIRSPEED INDICATOR	1	1		
ALTIMETER		1	1	
MAGNETIC COMPASS		1	1	
	Total	3		

10.6 Peso da fuselagem

A fuselagem é calculada pela expressão sugerida por Raymer [2]:

 $W_{\text{fuselage}} = 0.052 \text{ S}_{f}^{1.086} (N_z W_{\text{dg}})^{0.177} L_t^{-0.051} (L/D)^{-0.072} q^{0.241} + W_{\text{press}}$

- $S_f =$ área molhada da fuselagem;
- L_f = comprimento estrutural da fuselagem;
- L = comprimento total da fuselagem;
- q = pressão dinâmica;
- D = largura estrutural da fuselagem;
- W_{press} = peso extra devido à pressurização;
- Nz = fator de carga admissível;
- W_{dg} = peso máximo da aeronave.

Aplica-se um fator de conversão de 0,9 pelo fato da fuselagem ser de material composto.

10.7 Peso do sistema hidráulico

Segundo Raymer [2] o peso deste sistema é igual a 0,1% do peso máximo da aeronave.

10.8 Peso dos controles

$$W_{\text{flight}}_{\text{controls}} = 0.053 L^{1.536} B_w^{0.371} (N_z W_{\text{dg}} \times 10^{-4})^{0.80}$$

Onde:

- $B_w = envergadura da asa;$
- L = comprimento total da fuselagem;
- Nz = fator de carga admissível;
- W_{dg} = peso máximo da aeronave.

10.9 Peso do motor instalado

O peso do motor instalado foi obtido somando o peso dos dois motores com uma estimativa de aproximadamente 100kg para eixos e um redutor aeronáutico. A fórmula encontrada em Raymer [2] obteve um peso absurdamente grande. Desta forma preferiuse estimar o peso dos componentes de instalação.

10.10 Peso do sistema elétrico

O peso do sistema elétrico calculado pela equação presente em Raymer [2] ficou demasiadamente alto quando comparado com aeronaves da mesma categoria. Mas consultando outras fontes, obteve-se uma recomendação da Universidade de Stanford na qual o peso da parte elétrica é sugerido como sendo treze vezes o número de assentos do avião. Consegui-se um valor razoável.

10.11 Peso do trem de pouso

O trem de pouso é formado pelo trem do nariz e pelo trem principal. Por isso é necessário calcular cada um. Ambos foram calculados através de Raymer [2].

10.11.1 Peso do trem principal

 $W_{\text{main landing}} = 0.095 (N_l W_l)^{0.768} (L_m / 12)^{0.409}$

Onde:

- N_1 = fator de carga de pouso;
- L_m = comprimento do trem de pouso;
- W₁ = peso máximo de pouso.

10.11.2 Peso do trem do nariz

 $W_{\text{nose landing}} = 0.125 (N_l W_l)^{0.566} (L_n / 12)^{0.845}$

- N_l = fator de carga de pouso;
- $L_n =$ comprimento do trem de pouso;
- W₁ = peso máximo de pouso.

10.12 Peso do sistema de combustível

O sistema de combustível tem o seu peso expresso pela seguinte equação:

$$W_{\text{fuel system}} = 2.49 V_t^{0.726} \left(\frac{1}{1 + V_i/V_t}\right)^{0.363} N_t^{0.242} N_{en}^{0.157}$$

Onde:

- N_f = número de funções atuadas por controles;
- V_i = volume do tanque integral;
- V_t = volume de combustível;
- N_{en} = número de motores

10.13 Resultado dos pesos

Os resultados obtidos estão relacionados abaixo:

Peso	Valor		Valor	
Peso do sistema elétrico	104	lbs	47,17361	kg
Peso do acabamento interno	366,4038	lbs	166,1979	kg
Peso do sistema de combustível	181,7984	lbs	82,46238	kg
Peso da asa	698,498	lbs	316,8334	kg
Peso da fuselagem	1438,856	lbs	652,6542	kg
Peso do trem principal	156,8718	lbs	71,15584	kg
Peso do trem no nariz	14,33436	lbs	6,501957	kg
Peso da empenagem horizontal	71,50567	lbs	32,43442	kg
Peso da empenagem vertical	82,0221	lbs	37,2046	kg
Peso dos controles	138,5208	lbs	62,832	kg
Peso do motor instalado	1442,4	lbs	654,2616	kg
Peso do sistema hidráulico	8,245289	lbs	3,74	kg
Peso da aviônica	42,72152	lbs	19,37815	kg
Peso do sistema de ar condicionado de anti-gelo	208,5205	lbs	94,58333	kg
Peso total sem combustível	4954,7	lbs	2247,4	kg

Tabela 10.2 - Resultado do refinamento de peso

Peso total	8260,5 lbs	3746,9 kg
------------	------------	-----------

O peso obtido na primeira estimativa de peso foi de 3740kg. Com isso, tem-se uma diferença entre o peso refinado e o estimado de 0,18%. A partir do valor de peso obtido neste capítulo será possível analisar o passeio de cg da aeronave.

11 PASSEIO DO C.G

O método para determinação do passeio do c.g foi feito considerando, primeiramente a determinação do c.g para a condição de peso mínimo operacional da aeronave.Para se efetuar este primeiro cálculo considera-se o peso de todos os componentes da aeronave bem como as respectiva distâncias à linha datum (nariz da aeronave). Posteriormente, os valores são referenciados à linha da corda média aerodinâmica.

Em seguida é feita a inserção de todos os componentes móveis da aeronave como tripulação, passageiros, combustível, óleo, bagagem, etc. Esta etapa deve ser feita incluindo os itens do nariz para a cauda e, após da cauda para o nariz, e além disso considerou-se os pontos a seguir.

- Sem passageiros e sem combustível
- Sem passageiro e com combustível
- Carga total sem combutível

A tabela 11.1 fornece os dados de pesos de componentes bem como os respectivos braços.

Componente	Peso	Posição	Braço de alavanca
Piloto	79.3787	2.835	225.0385146
Co-Piloto	79.3787	2.835	225.0385146
Passageiro 1	79.3787	4.6165	366.4516058
Passageiro 2	79.3787	4.6165	366.4516058
Passageiro 3	79.3787	5.8695	465.9130728
Passageiro 4	79.3787	5.8695	465.9130728
Passageiro 5	79.3787	7.0825	562.1993931
Passageiro 6	79.3787	7.0825	562.1993931
Bagagem P1	18.1437	8.5795	155.6638295
Bagagem P2	18.1437	8.5795	155.6638295

Tabela 11.1 - Descrição dos componenetes

Bagagem P3	18.1437	8.5795	155.6638295
Bagagem P4	18.1437	8.5795	155.6638295
Bagagem P5	18.1437	8.5795	155.6638295
Bagagem P6	18.1437	8.5795	155.6638295
Bagagem Piloto	13.6078	8.5795	116.7478722
Bagagem Co-Piloto	13.6078	8.5795	116.7478722
Acabamento	166.198	5.9623	990.9220269
Ar Condicionado	94.5833	9	851.2499483
Avônica	19.3782	0.9	17.44033942
Empenagem	69.639	11.523	802.4504533
Fuselagem	652.654	6.49134	4236.60052
Hidráulico	3.74	5.9623	22.299002
Controles	62.832	5.9623	374.6232336
Motor instalado	654.262	10.5	6869.747162
Parte Elétrica	47.1736	0.9	42.45624583
Trem de Pouso (nariz)	6.50196	1.9	12.35371902
Trem de Pouso (principal)	71.1558	7.75	551.4577536
Combustível	728.359	7.75	5644.778381
Asa	316.833	7.75	2455.45848
Tanque de Combustivel	82.4624	7.75	639.0834265

A tabela XI.2 fornece o passeio do c.g para as configurações de 4 e 6 lugares.

Tabela	11.2	Passeio	do	c.g
--------	------	---------	----	-----

Configuração	Passeio do c.g em % da c.m.a
4 lugares	22 a 36
6 lugares	21 a 37

A figura 11.1 ilustra o passeio para a configuração de 4 lugares e a figura 11.2 ilustra o passeio para 6 lugares.

Figura 11.1 - Passeio do c.g 4 lugares

Figura 11.2 - Passeio do c.g 6 lugares

Percebe-se que, em ambas as configurações o passeio de c.g. ficou dentro de uma fixa aceitável.

12 Evolução dos Desenhos

Neste capítulo será apresentada a evolução dos desenhos desde os primeiros esboços feitos a mão, até o desenho final da aeronave feito no computador. Cada desenho será devidamente comentado.

12.1 Primeiro desenho

Figura 12.1 - Primeiro desenho da aeronave

O desenho acima mostra a primeira concepção do avião. Vê-se que a aeronave apresentava empenagem convencional e as hélices ficavam fixas na fuselagem. A idéia era tentar minimizar os efeitos de assimetria em caso de perda de um motor, aproximando elas o mais perto possível. A aeronave também não havia um nariz bem definido. Estipulou-se uma configuração interna nas quais os passageiros sentariam virados uns para os outros. Preferiu-se o uso de janelas arredondadas.

12.2 Segundo desenho

O segundo desenho veio com algumas modificações. A idéia de usar uma empenagem convencional foi substituída por uma empenagem em "T". Este tipo de empenagem foi considerado mais elegante para esta categoria de avião. O nariz do avião foi melhor trabalhado, chegando perto da forma que de fato possui atualmente. Admitiu-se que a longarina do avião passaria embaixo da cabine, levando à necessidade de se abaixar a asa e de se criar uma estrutura de ligação com a fuselagem, aumentando a largura da aeronave.

Figura 12.2 - Segundo desenho da aeronave

12.3 Terceiro desenho

O terceiro desenho propôs o uso de uma empenagem em "V". Este tipo de empenagem eliminaria dois problemas. Reduziria o arrasto criado pelas hélices fixas à fuselagem e aproximaria as mesmas minimizando o problema já descrito anteriormente. Além do mais, este tipo de empenagem foi considerado mais atraente do ponto de vista de design. Neste desenho, a asa foi esboçada já com as dimensões obtidas na estimativa de peso. Adotaram-se novamente janelas mais arredondadas. Aqui já se tem um estudo de proporções em andamento. Reduziu-se consideravelmente a largura da fuselagem.

12.4 Quarto desenho

O quarto e último desenho feito a mão já possui uma preocupação do design final da aeronave. As janelas foram remodeladas, e o nariz foi desenhado através de curvas suaves. O painel do piloto ficou com um design moderno. A empenagem foi recalculada e neste ponto do projeto, possuía um tamanho mais proporcional à aeronave. A solução para o problema de assimetria foi alterada. Optou-se por usar redutores que garantem que as duas hélices girem mesmo se um motor parar. Com isso, a posição das hélices já não era mais um problema.

12.5 Quinto desenho

O quinto e último desenho já apresenta o esboço final da aeronave. Este desenho passou por uma reformulação completa. Os tamanhos de área alar e envergadura foram obrigados a se modificar; pois durante o refinamento de peso, percebeu-se que a estimativa de peso inicial estava incoerente. Por isso, todos os cálculos tiveram de ser refeitos. Isto alterou consideravelmente o avião, que passo a contar com uma asa bem maior do que antes. Todo o estudo de proporção foi refeito e o estudo de ergonomia foi completado, dando origem a uma configuração interna adequada. Acrescentou-se o trem de pouso na posição correta e as superfícies de comando. Asa tomou a forma dos perfís escolhidos. O nariz foi modificado, e um novo painel, ainda mais atraente foi introduzido.

Figura 12.3 - Terceiro desenho da aeronave

Figura 12.4 - Quarto desenho da aeronave

Figura 12.5 - Desenho final da aeronave

13 Instrumentação Utilizada para Vôo e Navegação

Para a instrumentação, optou-se por utilizar o sistema integrado G1000 da Garmin®, um sistema de aviônica avançada com layout de fácil leitura composto por apenas dois monitores de EFIS para visualização das informações de vôo. Como redundância, utilizar-se-á alguns instrumentos analógicos em caso de pane do sistema principal.

A figura 13.1 ilustra o display do sistema que tem como função exibir todas as funções em tempo real. Dois monitores deste tipo são usados simultaneamente, de forma a se ter sempre duas funções em exibição. O monitor da direita é configurado como primário e o da esquerda, como multi-função.

Figura 13.1 - GDU 1040

A figura 13.2 mostra o sistema que integra áudio digital NAV/COM e sistemas de intercomunicação.

Figura 13.2 - GMA 1347

A figura 13.3 apresenta a unidade central do sistema. Esta central recebe as informações de cada componente e transmite para o display.

Figura 13.3 - GIA 63

A figura 13.4 representa o sistema que fornece a altitude e o rumo da aeronave. Esta unidade contém sensores, acelerômetros e sensores de variações.

Figura 13.4 - GRS 77

A figura abaixo mostra o processador de dados vindos do tubo de Pitot e do sensor de temperatura. Ele fornece dados de altitude de pressão, velocidade do ar e velocidade vertical.

Figura 13.5 - GDC 74A

O sensor dos sinais vindos do motor está representado na figura 13.6. Este fornece informações tais como temperatura do motor, pressão do motor e quantidade de combustível.

Figura 13.6 - GEA 71

As figuras 13.7 e 13.8 abaixo mostram os dois tipos de transponder encontrado no sistema.

Figura 13.7 – GTX 32 e GTX 33

A última figura representa o magnetômetro que faz a medição das informações do campo magnético local. As informações são enviadas para o GRS 77 para serem processadas, podendo então determinar o rumo magnético da aeronave.

Figura 13.8 - GMU 44

A figura abaixo mostra o sistema esquematizado por diagramas, facilitando a visualização do todo.

Figura 13.9 - Sistema esquematizado

Como instrumentos analógicos serão utilizados

• Velocímetro

Este instrumento tem como finalidade determinar a velocidade avião -atmosfera.

Figura 13.10 – Velocímetro

• Climb

Este instrumento mede a razão de subida e descida da aeronave, normalmente em ft/min.

Figura 13.11 - Climb

• Altímetro

Este instrumento fornece a altitude da aeronave baseado em diferença de pressão captada por uma cápsula aneróide.

Figura 13.12 - Altimetro

14 Desenhos

14.1 Três vistas

14.2 Desenho 3D

15 Relatório Descritivo

15.1 Tipo:

Aeronave da classe commuter bimotora, certificado conforme FAR parte 23.

15.2 Versões:

Duas versões de fábrica. Uma versão de seis lugares e outra executiva para quatro lugares.

15.3 Asas:

Asa baixa, forma em planta trapezoidal, estrutura *cantilever*, aerofólio LS-417 na raiz, e LS-421 na ponta, sem torção geométrica. Diedro de 2º, enflechamento de 5º, incidência nula em toda asa. Longarina fabricada em material composto. Revestimento fabricado em fibra de vidro. Flapes do tipo *plain*.

15.4 Fuselagem:

Fuselagem semi-monocoque fabricada em material composto.

15.5 Cauda:

Empenagem do tipo V, estrutura cantilever, forma em planta trapezoidal.

15.6 Trens de pouso:

Trem de pouso do tipo triciclo retrátil. Trem principal na asa, amortecedores hidráulicos, freio a disco.

15.7 Grupo moto propulsor:

Dois motores Centurion 4.0 de 350HP com rotação de 2300rpm. Tanque do tipo integral nas asas com capacidade de 910 litros.

15.8 Acomodações:

Seis assentos dispostos em duas fileiras separados por corredor. Compartimento de bagagem traseiro para 10kg por passageiro. Lavabo e banheiro. Na versão executiva, quatro poltronas de luxo dispostas de frente pra outra separadas por corredor.

15.9 Equipamentos:

Sistema integrado G1000 da Garmin®. Instrumentos para VFR e IFR.

15.10 Características Técnicas:

Característica	Valor	Característica	Valor
Comprimento	13m	Alongamento	10.24
Envergadura	16m	16m Velocidade máx. cruzeiro	
Largura da fuselagem	1.62m	52m Distância de decolagem	
Comprimento da fuselagem	13m	Distância de pouso	880.5m
Área alar	25m ²	Razão de subida	1200ft/min
Área do aileron	0.625 m ²	Razão de subida c/ um motor	530ft/min
Área do flap	0.859 m^2	Teto de serviço	25000ft
Área da superfície	0.924 m^2	Relação peso - potência	5.5kg/hp

móveldaempenagem			
Alcance	3000km	Altura da cabine	1.606m
Área da empenagem	6.16 m ²	Largura da cabine	1.452m
Corda na ponta	1.26m	Alcance	3000km
Corda na raiz	1.8m	Número de motores	2
Diedro	2°	Potência do motor	350 hp
Incidência Ponta e raiz	0°	Comprimento da cabine c/4 assageiros	3.632m
Peso vazio	2053.53kg	Comprimento da cabine c/6 assageiros	4.219m
Peso máx. decolagem	3746.9kg		
Carga paga máx	585.13kg		
Peso de combustível	728.35kg		
Carga alar	149.6kg/m ²		

16 Cálculos Aerodinâmicos

Neste trabalho foi calculada a polar da aeronave, utilizando-se para tal da metodologia apresentada por Décio Pullin referente a apostila de Aerodinâmica do Avião e a tese "Introdução ao projeto de aeronaves leves" de autoria de Cláudio Barros. Para que se possam obter as polares da aeronave ($C_L x \alpha e C_L x C_D$), torna-se necessário determinar alguns parâmetros conforme a seguir:

16.1 Levantamento de CL x α - Sustentação versus ângulo de ataque da aeronave

16.1.1 Determinação do Coeficiente de Sustentação da Fuselagem – Clf:

Para se determinar os valores de "Clf" é necessário que se obtenha os valores dos diversos diâmetros e perímetros do corpo equivalente de revolução (CER). Para isto a aeronave foi dividida em 3 estações com espaçamentos conforme a seguinte tabela x.1:

Estação	Posição l (m)	Diâmetro máximo do	Área molhada* (m²)
		corpo de revolução* (m)	
A	3,3		12,64
В	5,7	D = 3,098	30,16
С	4	-	13,77

Tabela 16.1 – Parâmetros das estações

(*Áreas calculadas pelo software SolidWorks)

Da equação 6.18 de Pullin(1979), fornece:

$$C_{Lf} = \frac{\alpha - \alpha_{0F}}{57, 3.S} \left[\frac{K.\pi D^2}{2} + \eta C_{Dc} \cdot \frac{(\alpha - \alpha_{0F})}{57, 3} \cdot \int_{X_0}^{y} d.dx \right]$$
(1.1)

onde:

 α_{of} - ângulo de ataque de sustentação nula da fuselagem

 α - ângulo de ataque da fuselagem

S - área alar

K - fator de massa aparente (Pullin, 1979)

D - diâmetro máximo do CER

 η - arrasto cilindro infinito / arrasto cilindro finito (Pullin)

 C_{Dc} - f [M.sen($\alpha - \alpha_{of}$)] - coeficiente de arrasto para escoamento inclinado em um cilindro finito em função do número de Mach.

Xo - ponto onde o escoamento passa de potencial a viscoso(Pullin, 1976)

lf-comprimento total da fuselagem

 $\int_{x_0}^{y} ddx$ - área molhada da fuselagem atrás do ponto Xo

Sendo:

 $\alpha_{of} = 0^{\circ} \text{ (somente ensaios em túnel de vento poderiam comprovar)}$ $\alpha \text{ variará de } -10^{\circ} \text{ a } 22^{\circ} \text{ de } 2^{\circ} \text{ em } 2^{\circ}$ $S = 25m^{2}$ $D = 3,098m^{2}$ $\eta = 0,61 \text{ (Gráfico } 6.4.2) \text{ (Pullin, 1979)}$ $C_{Dc} = 1,2$ la/lf = 0,2538 Xo/lf = 0,509 Xo = 6,617m $\iint_{xo} ddx = 8,25m^{2}$ $M(n^{\circ} \text{ de Mach}) = 0,36$

A tabela 1.2 apresenta os resultados para C_{Lf} como função do ângulo de ataque da fuselagem da aeronave α_{F} .

Tabela 16.2 - Variação de Clf com o ângulo de ataque

$\alpha_{\rm F}(^{\circ})$	C _{LF}
-10	-0,076836
-8	-0,062646
-6	-0,047867
-4	-0,0325
-2	-0,016544
0	0
2	0,017133
4	0,0348546
6	0,0531648
8	0,0720637
10	0,0915512
12	0,1116273
14	0,132292
16	0,1535454
18	0,1753873
20	0,1978179
22	0,2208372

16.1.2 Determinação da variação do Coeficiente de Sustentação com o Ângulo de Ataque a=(dCl/Dα)

O perfil aerodinâmico da aeronave na ponta é um NASA LS-421, e na raiz, NASA LS-417. De posse das curvas $C_L \propto \alpha$ dos perfis é possível estimar o valor de a_0 . O valor a_0 é o valor da inclinação da reta.

Plotando alguns pontos do gráfico nas tabelas abaixo, obtém-se:

LS-	417	LS-	421
α (rad)	CL	a (rad)	CL
-2	0,3234	-2,3	0,27
13,7	1,9263	13,4	1,8047

$$\frac{\partial C_L}{\partial \alpha} = 5,60 / rad$$

Para o perfil LS-417:

$$\frac{\partial C_L}{\partial \alpha} = 5,85 / rad$$

Dividindo a asa como se segue, é possível calcular um valor representativo de a₀.

Tabela 16.4 - Esquema da divisão da asa para cálculo do a0 médio

Posição	a ₀	Área equivalente
1	5,63	2,67m ²
2	5,69	2,97m ²
3	5,57	3,27m ²
4	5,81	3,57m ²

O valor médio de a0 será calculado a partir da média das inclinações ponderadas pelas suas áreas de influência, ou seja:

$$a_0 = \sum_{i=1}^{N} \frac{S_i \cdot a_{0_i}}{S}$$
(1.2)

Assim:

$$a_0 = \frac{5,63 \cdot 2,67 + 5,69 \cdot 2,97 + 5,57 \cdot 3,27 + 5,81 \cdot 3,57}{12,5}$$

 $a_0 = 5,67/rad$

O valor de "a" é dado por:

$$a = \frac{(2.\pi Ae)}{\left\{2 + \left[\frac{Ae^2}{k^2} \cdot \left(\beta^2 + tg^2 \Lambda_{C/2}\right) + 4\right]^{\frac{1}{2}}\right\}}$$
(1.3)

Onde

Ae= alongamento efetivo ; no caso Ae=11,08

que é dado por:

Ae = A (1+2,2(Sep/Sw))

onde A = alongamento = 10,24

Sep = área lateral do Winglet = $0.93m^2$ Sw = área alar = $25m^2$

Como a asa apresenta dois perfis, um na raiz e outro na ponta, ponderando-se pelas áreas, ter-se-á:

k = 1,16

 $\beta^2 = 1 - M^2 = 0.87$

 $\Lambda_{c/2}$ = enflechamento da asa na linha das metades das cordas = 2,88°

Levando os valores na expressão "a", tem-se:

$$a = 5,16/rad$$

16.1.3 Determinação do ângulo de ataque de sustentação nula da asa em relação à linha de referência da fuselagem - α_{0w} :

É dado por:

$$\alpha_{0w} = (\alpha_{0w})_{0r} - i_r + J.\epsilon \tag{1.3}$$

onde:

(α_{0w})_{0r} = ângulo para sustentação nula do perfil da raiz da asa (bidimensional) = -4,15 i_r = indidência na raiz = 0

 ϵ = torção aerodinâmica = 0,15

J = fator dependente do alongamento e do afilamento da asa = -0,43

Então, temos o seguinte resultado:

$$\alpha_{0w} = -4,2145^{\circ}$$

16.1.4 Determinação do coeficiente de sustentação ponderado dos perfis – CL perfil:

É calculado por:

$$C_{Lperfil} = C_{LPRaiz} \left(\frac{S1}{S}\right) + C_{LPPonta} \left(\frac{S2}{S}\right)$$
(1.4)

O que resulta na tabela 1.5

Tabela 16.5 - Variação de CLperfil com o ângulo de ataque

$\alpha_{\rm F}(^{\rm o})$	α asa(°)	CL _{P - Ponta}	CL _{P - raiz}	S1/S	S2/S	$S_2/S(CLP)_P$	$S_1/S(CLP)_R$	CL - perfil
-10	-10	-0,8133	-0,8248	0,51216	0,48784	-0,3967602	-0,422429	-0,81919
-8	-8	-0,5734	-0,551	0,51216	0,48784	-0,2797274	-0,282200	-0,561928
-6	-6	-0,2866	-0,2625	0,51216	0,48784	-0,1398149	-0,134442	-0,274257
-4	-4	0,01	0,0267	0,51216	0,48784	0,0048784	0,0136747	0,0185531
-2	-2	0,3158	0,3234	0,51216	0,48784	0,15405987	0,1656325	0,3196924
0	0	0,6084	0,604	0,51216	0,48784	0,29680186	0,3093446	0,6061465
2	2	0,8541	0,8534	0,51216	0,48784	0,41666414	0,4370773	0,8537415
4	4	1,0562	1,0977	0,51216	0,48784	0,51525661	0,562198	1,0774546
6	6	1,2355	1,3121	0,51216	0,48784	0,60272632	0,6720051	1,2747315
8	8	1,4147	1,5047	0,51216	0,48784	0,69014725	0,7706472	1,4607944
10	10	1,5762	1,6853	0,51216	0,48784	0,76893341	0,8631432	1,6320767
12	12	1,72	1,8264	0,51216	0,48784	0,8390848	0,935409	1,7744938
14	14	1,8398	1,9414	0,51216	0,48784	0,89752803	0,9943074	1,8918355
16	16	1,9254	2,001	0,51216	0,48784	0,93928714	1,0248322	1,9641193
18	18	1,9535	1,9397	0,51216	0,48784	0,95299544	0,9934368	1,9464322
20	20	1,903	1,735	0,51216	0,48784	0,92835952	0,8885976	1,8169571
22	22	1,7898	1,5117	0,51216	0,48784	0,87313603	0,7742323	1,6473683

16.1.5 Determinação do Coeficiente de Sustentação da Asa - Clw

é dado por:

$$C_{LW} = \frac{a}{a_0} C_{LPerfil} \tag{1.5}$$

Assim, obtém-se a tabela seguinte

α _F (°)	α asa	a/ao	CL asa
	(°)		
-10	-10	0,900528448	-0,73770375
-8	-8	0,900528448	-0,50603180
-6	-6	0,900528448	-0,24697618
-4	-4	0,900528448	0,016707569
-2	-2	0,900528448	0,287892115
0	0	0,900528448	0,545852163
2	2	0,900528448	0,768818497
4	4	0,900528448	0,970278555
6	6	0,900528448	1,14793194
8	8	0,900528448	1,315486914
10	10	0,900528448	1,469731458
12	12	0,900528448	1,597982169
14	14	0,900528448	1,703651647
16	16	0,900528448	1,768745301
18	18	0,900528448	1,752817561
20	20	0,900528448	1,636221575
22	22	0,900528448	1,483502022

Tabela 16.6 - Variação de C_{Lasa} com o ângulo de ataque

16.1.6 Determinação do Coeficiente de Sustentação Asa – Fuselagem - CLw-F

Com a equação:

$$C_{\text{LA-F}} = C_{\text{lf}}(\alpha) + [Kw(f) - Kf(w)]. C_{\text{Lasa}}$$
(1.6)

Onde:

Kw(f) = 1,18Kf(w) = 0,28

monta-se a seguinte tabela:

α _F (°)	α asa		
	(°)		
-10	-10	-0,740769	
-8	-8	-0,51807436	
-6	-6	-0,2701458	
-4	-4	-0,0174633	
-2	-2	0,242558535	
0	0	0,491266947	
2	2	0,709069639	
4	4	0,908105305	
6	6	1,086303589	
8	8	1,256001925	
10	10	1,414309497	
12	12	1,549811242	
14	14	1,6655785	
16	16	1,745416139	
18	18	1,752923145	
20	20	1,670417353	
22	22	1,555988973	

Tabela 16.7 – Variação de C_Lasa-fuselagem com o ângulo de ataque

16.1.7 Determinação do Coeficiente de Sustentação da Empenagem - CLE

É dado por:

$$\mathbf{C}_{\text{LE}} = (\mathbf{a}_{\text{E}}/\mathbf{a}_{0\text{E}}).\mathbf{C}_{\text{Lperfil}}$$
 1.7)

Onde

$$a_{e} = \frac{(2.\pi Ae)}{\left\{2 + \left[\frac{Ae^{2}}{k^{2}} \cdot \left(\beta^{2} + tg^{2}\Lambda_{C/2}\right) + 4\right]^{\frac{1}{2}}\right\}}$$
(1.8)

Pela tabela 1.8 temos:

a oe	7,12239	(1/rad)
be	5,5	(m)
S e	6,5	(m²)
Ae	4,653846154	
K	1,133563575	
β²	0,865056227	
Λ (c/2)	5	(°)
a e	4,622739026	
tg² ∧	0,007654266	
(c/2)		

Tabela 16.8 – Tabela para o perfil NACA 0015

Com isso que se constrói a seguinte tabela, sabendo-se que o perfil da empenagem é o NACA 0015:

α _F (°)	α asa	α _{EH} (°)	CL	CLE
	(°)		perfil	
-10	-10	-10	-1,2425	-0,80643622
-8	-8	-8	-1,0056	-0,65267787
-6	-6	-6	-0,7564	-0,4909363
-4	-4	-4	-0,5051	-0,32783174
-2	-2	-2	-0,2531	-0,16427284
0	0	0	0	0
2	2	2	0,2532	0,164337746
4	4	4	0,5051	0,327831737
6	6	6	0,7565	0,491001205
8	8	8	1,0058	0,652807683
10	10	10	1,243	0,806760738
12	12	12	1,4637	0,950004579
14	14	14	1,6004	1,038728789
16	16	16	1,5831	1,027500341
18	18	18	1,3739	0,891720497
20	20	20	1,1478	0,744971822
22	22	22	1,0654	0,69149066

Tabela 16.9 – Coeficiente de sustentação da empenagem

16.1.8 Determinação do ângulo local na empenagem- αE

É dado por:

$$\alpha_{\rm E} = \eta_{\rm E} + \alpha_{\rm F} - \varepsilon$$

Onde:

 η_E = incidência na empenagem em relação à linha de referência da fuselagem = 0°

 α_E = ângulo de ataque da linha de referência da fuselagem

 $\varepsilon = \hat{a}$ ngulo de down-wash

Pelo (Pullin, pg 63), obtemos a tabela seguinte:

r b/2	4
m b/2	2,1
r	0,5
m	0,2625
dε/dα(ca)	0,25
(b eh)/(b)	0,34375
A	11,07804
dε/dα(med)	0,2525

Tabela 16.10 – Tabela de dados do Pullin

O que resulta na Tabela 1.11:

α _{F (°)}	-10	-8	-6	-4	-2	0	2	4
ε (°)	-2,525	-2,02	-1,515	-1,01	-0,505	0	0,505	1,01
α Ε	-7,475	-5,98	-4,485	-2,99	-1,495	0	1,495	2,99
CLE	-0,0251	-0,02889	-0,02791	-0,0225	-0,0132	-0,00122	0,01237	0,0258

Tabela 16.11 - Coeficiente de sustentação da empenagem

α _{F (°)}	6	8	10	12	14	16	18	20	22
ε (°)	1,515	2,02	2,525	3,03	3,535	4,04	4,545	5,05	5,555
α _E	4,485	5,98	7,475	8,97	10,465	11,96	13,455	14,95	16,445
CLE	0,0372	0,044094	0,04379	0,0332	0,0091	-0,0323	-0,0953	-0,1841	-0,3037

16.1.9 Sustentação da Aeronave - CL

A sustentação da aeronave é calculada somando-se a sustentação asa fuselagem e a sustentação da empenagem. Fazendo-se isto obtém-se o seguinte resultado:

α _F (°)	CI _{AER}
-10	-0,95044
-8	-0,68777
-6	-0,39779
-4	-0,1027
-2	0,199848
0	0,491267
2	0,751797
4	0,993342
6	1,213964
8	1,425732
10	1,624067
12	1,796812
14	1,935648
16	2,012566
18	1,98477
20	1,86411
22	1,735777

Tabela 16.12 - Coeficiente de sustentação da aeronave Cl_{AER}

16.2 Levantamento de C_D x α -Arrasto versus ângulo de ataque da aeronave

16.2.1 Arrasto da asa

O arrasto da asa é dado pela equação 1.9:

$$C_{\text{DASA}} = C_{\text{DEASA}} + C_{\text{DIASA}} \tag{1.9}$$

Onde

 C_{DASA} = arrasto da asa C_{DEASA} = arrasto parasita da asa $C_{Di ASA}$ = arrasto induzido da asa

a) A determinação do coeficiente de arrasto parasita da asa pode ser feita como segue:

Como a asa tem dois perfis, um na raiz e outro na ponta e com variação linear entre eles e sem torção geométrica, o arrasto parasita pode ser dado pela equação 1.10:

$$C_{DEASA} = \left(\frac{C_{De1}.S1 + C_{De2}.S2}{S1 + S2}\right) \cdot \frac{Se}{S}$$
(1.10)

onde

 $S1= \text{área de influência do perfil 1} (LS417) = 6,402 \text{ m}^2$ $S2 = \text{área de influência do perfil 2} (LS421) = 6,098 \text{ m}^2$ S = área alar = 25 m2 $Se = \text{área da asa até a junção com a fuselagem} = 23,24 \text{ m}^2$

Assim para cada ângulo de ataque pode-se montar a tabela 1.13.

Tabela 16.13 - CDe ASA

α _F (°)	α asa (°)	C _{De} 1	C _{De} 2	C _{De} ASA
-10	-10	0,01326	0,01385	0,012594059
-8	-8	0,00936	0,01021	0,009086528
-6	-6	0,00771	0,0083	0,007434779
-4	-4	0,00651	0,00654	0,006065301
-2	-2	0,00504	0,00504	0,004685184
0	0	0,00536	0,00489	0,004769513
2	2	0,00763	0,00738	0,006979474
4	4	0,00945	0,00994	0,009006933
6	6	0,01154	0,01399	0,011838649
8	8	0,01496	0,01943	0,015933943
10	10	0,02037	0,02655	0,021738558
12	12	0,02921	0,03603	0,030246459
14	14	0,04182	0,04858	0,041941505
16	16	0,06153	0,06529	0,058903433
18	18	0,09503	0,08784	0,085079251
20	20	0,15133	0,121	0,126921832
22	22	0,22282	0,16461	0,180735466

b) A determinação do coeficiente de arrasto induzido da asa pode ser feita como segue:

É dado pela equação 1.11:

$$C_{DiASA} = \frac{C_{LASA}}{\pi . A^2} . (1 + \delta 1.\delta 2)$$
(1.11)

onde

A= 11,078 δ 1= (obtido do gráfico 6.2.12 Pullim) = 0,06 δ 2 =(obtido do gráfico 6.2.13Pullim) = 1,1

Assim substituindo-se os valores pode-se montar a tabela 1.14:

$\alpha_F(^{\circ})$	α asa (°)	C _{LASA}	C _{DiASA}
-10	-10	-0,73770376	0,016668953
-8	-8	-0,5060318	0,007843321
-6	-6	-0,24697618	0,001868334
-4	-4	0,016707569	8,55009E-06
-2	-2	0,287892115	0,002538656
0	0	0,545852163	0,009126293
2	2	0,768818497	0,018104727
4	4	0,970278555	0,028836145
6	6	1,14793194	0,040362366
8	8	1,315486914	0,053005069
10	10	1,469731458	0,066163782
12	12	1,597982169	0,078214667
14	14	1,703651647	0,088900854
16	16	1,768745301	0,095824142
18	18	1,752817561	0,094106099
20	20	1,636221575	0,082002779
22	22	1,483502022	0,067409425

Tabela 16.14 - CDi ASA

16.2.2 Arrasto da empenagem

O arrasto da empenagem pode ser obtido pela equação 1.12

 $C_{DE} = C_{DEe} + C_{DiE}$

Onde

 C_{DE} = arrasto da empenagem

- C_{DEe} = arrasto parasita da empenagem
- C_{DiE} = arrasto induzido da empenagem
 - a) A determinação do coeficiente de arrasto parasita da empenagem pode ser feita como segue:

(1.12)

$$C_{DE} = C_{DP} \frac{Se}{S}$$
(1.13)

onde

 C_{DP} = Coeficiente de arrasto do perfil da empenagem

Se = área efetiva da empenagem $= 6.5 \text{m}^2$

S =área de referência $= 25m^2$

Pode-se levantar a tabela 1.12 baseando-se nas curvas do perfil da empenagem:

α _F (°)	α _{EH (°)}	C _{DP}	C _{DEEH}
-10	-7,475	0,01104	0,0028704
-8	-5,98	0,0089	0,002314
-6	-4,485	0,00746	0,0019396
-4	-2,99	0,00647	0,0016822
-2	-1,495	0,0058	0,001508
0	0	0,00557	0,0014482
2	1,495	0,0058	0,001508
4	2,99	0,00647	0,0016822
6	4,485	0,00746	0,0019396
8	5,98	0,0089	0,002314
10	7,475	0,01105	0,002873
12	8,97	0,01458	0,0037908
14	10,465	0,02265	0,005889
16	11,96	0,04901	0,0127426
18	13,455	0,10008	0,0260208
20	14,95	0,16212	0,0421512
22	16,445	0,21462	0,0558012

Tabela 16.15 - CDeE empenagem

 b) A determinação do coeficiente de arrasto induzido da empenagem pode ser feita como segue

$$C_{DiE} = \frac{C_{LE}^{2}}{\pi . A} . (1 + \delta 1.\delta 2) . \frac{S_{E}}{S}$$
(1.14)

onde A= 4,65 Se/S = 0,26 $\delta 1 = (obtido do gráfico 6.2.12 Pullim) = 0,04$ $\delta 2 = (obtido do gráfico 6.2.13 Pullim) = 1$

Pode-se levantar a tabela 1.16 :

α _F (°)	α _{EH (°)}	C _{LEH}	C _{DIEH}
-10	-7,475	-0,02518073	4,38196E-05
-8	-5,98	-0,0288953	5,77013E-05
-6	-4,485	-0,02791594	5,38562E-05
-4	-2,99	-0,02251041	3,50186E-05
-2	-1,495	-0,01329397	1,22135E-05
0	0	-0,00122936	1,04445E-07
2	1,495	0,012373183	1,05802E-05
4	2,99	0,025855931	4,6201E-05
6	4,485	0,037213664	9,57054E-05
8	5,98	0,044093672	0,000134364
10	7,475	0,043795749	0,000132555
12	8,97	0,0332722	7,65058E-05
14	10,465	0,009127837	5,75794E-06
16	11,96	-0,03238002	7,24579E-05
18	13,455	-0,09534154	0,000628197
20	14,95	-0,1841944	0,002344684
22	16,445	-0,30372374	0,006375128

Tabela 16.16 - CDiE empenagem

16.2.3 Arrasto da Fuselagem

a) Cálculo do número de Reynolds

Onde

V = 450 Km/h	(Velocidade de cruzeiro)
c = 13 m	(comprimento da fuselagem)

Assim Re = $1,11 \ge 10^8$

b) Cálculo da esbeltez

A esbeltez é dada pela equação 1.16

Ee=L/D (1.16) Onde L = Comprimento da fuselagem = 13 m D = Diâmetro máximo da fuselagem = 3,098 m

Assim Ee = 4,196

c) Fator de forma

Entrando-se com o valor de Ee no ábaco 6.4.6 de Pullim obtem-se o valor do fator de forma.

Assim F = 1,22

 d) A determinação do coeficiente de arrasto parasita da fuselagem pode ser feita como segue:

O coeficiente de arrasto parasita para sustentação nula é dado pela equação 1.17

$$C_{\text{Dof}} = C_{\text{Doa}} + C_{\text{Dob}} + C_{\text{Doc}} + \Delta C_{\text{DoAf}}$$
(1.17)

Onde

 $C_{Doa} = \frac{Cf.F.S_M^A}{S}$ = arrasto correspondente à parte dianterira da fuselagem = 0,001357

 $C_{Dob} = \frac{Cf.F.S_{M}^{B}}{S}$ = arrasto correspondente à parte intermediária da fuselagem = 0,003238 $C_{Doc} = \frac{Cf.F.S_M^C}{S}$ = arrasto correspondente à parte posterior da fuselagem = 0,001478

F = fator de forma = 1,22

Cf = atrito médio da fuselagem = (pode ser obtido através da figura 6.4.5, Pullim, em função do número de Reynolds, comprimento da fuselagem e do tamanho médio do grão da superfície da mesma – Fator "K")

K = (para produção em massa) = 0,00003 Assim Cf = 0,0022

e) Acréscimo de arrasto devido ao enflechamento do bordo de fuga da fuselagem

Para a presente aeronave tem-se:

 $\Lambda f = 7,67^{\circ}$ levando-se tal valor no gráfico 6.4.7 de Pullim, obtem-se:

$$\Delta C_{Do\Lambda} = \frac{K}{100} . C_{oc} \tag{1.18}$$

Assim $\Delta C_{DoAf} = 0,0001183$

Substituindo-se os valores na equação 1.17 Tem-se: $C_{Dof} = 0,0061916$

f) Arrasto induzido da fuselagem em função de seu ângulo de ataque

É dado pela equação 1.19

$$C_{D_{if}} = \frac{\alpha_f - \alpha_{0f}}{57.3} . C_{Lf}$$
(1.19)

onde

CLf = coeficiente de sustentação da fuselagem já obtido anteriormente em função do ângulo de ataque da fuselagem

Pode-se então elaborar a seguinte tabela 1.17

α _F (°)	C _{LF}	C _{Dif}
-10	-0,07684	0,013409358
-8	-0,06265	0,008746351
-6	-0,04787	0,005012276
-4	-0,0325	0,002268769
-2	-0,01654	0,000577465
0	0	0
2	0,017133	0,00059801
4	0,034855	0,002433131
6	0,053165	0,005566999
8	0,072064	0,01006125
10	0,091551	0,015977519
12	0,111627	0,023377443
14	0,132292	0,032322657
16	0,153545	0,042874797
18	0,175387	0,055095499
20	0,197818	0,0690464
22	0,220837	0,084789134

Tabela 16.17 - CDif

16.2.4 Arrasto de interferência da asa-fuselagem

É dado pela equação 1.20

$$\Delta C_{DA-F} = 0.05.(C_{Dof} + C_{Cif})$$

onde

CDof = arrasto parasita da fuselagem

CDif = arrasto induzido da fuselafem

1.20)

Ambos os arrastos já foram obtidos em itens anteriores. Pode-se, assim montar a tabela 1.18

α _F (°)	C _{DA-F}
-10	0,00098
-8	0,000747
-6	0,00056
-4	0,000423
-2	0,000338
0	0,00031
2	0,000339
4	0,000431
6	0,000588
8	0,000813
10	0,001108
12	0,001478
14	0,001926
16	0,002453
18	0,003064
20	0,003762
22	0,004549

Tabela 16.18 – CDA-F

16.2.5 Arrasto de interferência da empenagem- fuselagem

É dado pela equação 1.21

$$\Delta C_{DE-F} = n1.(0.8t^3 - 0.0005) \cdot \frac{c_j^2}{S}$$
(1.21)

onde

 $n1 = n^{\circ}$ de cantos na junção empenagem fuselagem = 4

t = espessura relativa da empenagem na junção = 0,15

Cj =corda da empenagem na junção = 1,28 m

S =área de referência – $25m^2$

Assim $\Delta C_{DE-F} = 0,0005767$

16.2.6 Arrasto de devido a colete de ar

É dado pela equação 1.22

$$C_{Dcol} = \frac{m.V}{q.S}.$$
(1.22)

onde

m =fluxo de ar coletado = 0,0006.P(hp) = 0,396 (kgf*s²/m4) V = velocidade de cruzeiro = 450Km/h q = pressão dinâmica = 976,56 Kgf/ m² S = área de referência = 25 m² Assim $C_{Dcol} = 0,0020275$

16.2.7 Arrasto total da aeronave

O arrasto total da aeronave é obtido somando-se todas as parcelas de arrasto para cada ângulo de ataque da fuselagem.Pode-se então montar a tabela 1.16

α _F (°)	C_{De} ASA	C _{DIASA}	Среен	C _{DIEH}	Cdof	C _{Dif}	C _{DAF}	${\bigtriangleup C_{\text{DEH-F}}}$	Cdcol	CD AER	CD AER 10%
-10	0,012594	0,016668953	0,0028704	4,38196E-05	0,006191623	0,01340936	0,00098	0,0005767	0,00202752	0,0553625	0,060898748
-8	0,009087	0,007843321	0,002314	5,77013E-05	0,006191623	0,00874635	0,0007469	0,0005767	0,00202752	0,03759066	0,041349725
-6	0,007435	0,001868334	0,0019396	5,38562E-05	0,006191623	0,00501228	0,0005602	0,0005767	0,00202752	0,0256649	0,02823139
-4	0,006065	8,55009E-06	0,0016822	3,50186E-05	0,006191623	0,00226877	0,000423	0,0005767	0,00202752	0,01927872	0,02120659
-2	0,004685	0,002538656	0,001508	1,22135E-05	0,006191623	0,00057746	0,0003385	0,0005767	0,00202752	0,01845583	0,020301416
0	0,00477	0,009126293	0,0014482	1,04445E-07	0,006191623	0	0,0003096	0,0005767	0,00202752	0,02444955	0,026894506
2	0,006979	0,018104727	0,001508	1,05802E-05	0,006191623	0,00059801	0,0003395	0,0005767	0,00202752	0,03633613	0,039969746
4	0,009007	0,028836145	0,0016822	4,6201E-05	0,006191623	0,00243313	0,0004312	0,0005767	0,00202752	0,05123171	0,056354879
6	0,011839	0,040362366	0,0019396	9,57054E-05	0,006191623	0,005567	0,0005879	0,0005767	0,00202752	0,06918711	0,076105822
8	0,015934	0,053005069	0,002314	0,000134364	0,006191623	0,01006125	0,0008126	0,0005767	0,00202752	0,09105713	0,100162843
10	0,021739	0,066163782	0,002873	0,000132555	0,006191623	0,01597752	0,0011085	0,0005767	0,00202752	0,11678973	0,128468703
12	0,030246	0,078214667	0,0037908	7,65058E-05	0,006191623	0,02337744	0,0014785	0,0005767	0,00202752	0,14598019	0,160578206
14	0,041942	0,088900854	0,005889	5,75794E-06	0,006191623	0,03232266	0,0019257	0,0005767	0,00202752	0,17978135	0,197759483
16	0,058903	0,095824142	0,0127426	7,24579E-05	0,006191623	0,0428748	0,0024533	0,0005767	0,00202752	0,221666661	0,243833272
18	0,085079	0,094106099	0,0260208	0,000628197	0,006191623	0,0550955	0,0030644	0,0005767	0,00202752	0,27279006	0,300069069
20	0,126922	0,082002779	0,0421512	0,002344684	0,006191623	0,0690464	0,0037619	0,0005767	0,00202752	0,33502466	0,368527121
22	0,180735	0,067409425	0,0558012	0,006375128	0,006191623	0,08478913	0,004549	0,0005767	0,00202752	0,40845525	0,449300776

Tabela 16.19 - C_DAER

O valor de 10% atribuído na última coluna representa uma estimativa do acréscimo de arrasto na polar devido a possíveis protuberâncias não estimadas na polar original como antenas, diferenças de rugosidade na hora da construção com relação ao estipulado, suportes de ailerons e flaps, etc.

16.3 Características de planeio da aeronave com motores em marcha lenta

a) Eficiência

É dado pela equação 1.23

$$E = \frac{CL_{AER}}{CD_{AER}}$$
(1.23)

Para este cálculo, admite-se que nem o motor gera tração e nem a hélice produz arrasto. Pode-se, então levantar a tabela 1.17

a _(°)		CD AER	E	
α _F ()	OFAER	10%		
-10	-0,95044	0,060898748	-15,6069287	
-8	-0,68777	0,041349725	-16,6330152	
-6	-0,39779	0,02823139	-14,0903172	
-4	-0,1027	0,02120659	-4,84281332	
-2	0,199848	0,020301416	9,844022485	
0	0,491267	0,026894506	18,26644218	
2	0,751797	0,039969746	18,80916245	
4	0,993342	0,056354879	17,62654047	
6	1,213964	0,076105822	15,95099908	
8	1,425732	0,100162843	14,2341399	
10	1,624067	0,128468703	12,6417349	
12	1,796812	0,160578206	11,1896407	
14	1,935648	0,197759483	9,787889571	
16	2,012566	0,243833272	8,253862202	
18	1,98477	0,300069069	6,614378751	
20	1,86411	0,368527121	5,058270936	
22	1,735777	0,449300776	3,8632841	

Tabela 16.20 - Eficiência E

b) Polar de velocidades

A polar de velocidades trata a relação entre a velocidade horizontal de planeio da aeronave com a velocidade de descida da mesma.

A velocidade de descida Vy é dada pela equação 1.24

$$Vy = \frac{V}{\sqrt{1+E^2}} \tag{1.24}$$

onde

V = velocidade "horizontal" de planeio (m/s) Vy = velocidade de descida (m/s)

Pode-se montar a tabela 1.21 para aeronave em vôo normal.

α _F (°)	CI AER	E	V(m/s)	V _{Y (m/s)}	V(Km/h)
-10	-0,95044	-15,6069287	-	-	-
-8	-0,68777	-16,6330153	-	-	-
-6	-0,39779	-14,0903173	-	-	-
-4	-0,1027	-4,84281332	-	-	-
-2	0,199848	9,844022485	109,4400605	3,072358417	393,9842177
0	0,491267	18,26644218	69,80186323	1,059889825	251,2867076
2	0,751797	18,80916245	56,42549309	0,832128673	203,1317751
4	0,993342	17,62654047	49,08812973	0,772341047	176,717267
6	1,213964	15,95099908	44,40408257	0,771757276	159,8546973
8	1,425732	14,2341399	40,97385736	0,797634648	147,5058865
10	1,624067	12,6417349	38,39050089	0,840930449	138,2058032
12	1,796812	11,1896407	36,49844955	0,902460852	131,3944184
14	1,935648	9,787889571	35,16516004	0,992810079	126,5945761
16	2,012566	8,253862202	34,48662525	1,152196962	124,1518509
18	1,98477	6,614378751	34,72726993	1,442021022	125,0181717
20	1,86411	5,058270936	35,83356496	1,93045712	129,0008339
22	1,735777	3,8632841	37,13461113	2,584860735	133,6846001

Tabela 16.21 - Polar de velocidades

16.4 Resultados e análises

Os resultados obtidos apresentam curvas $C_L \ x \ \alpha$, $C_L \ x \ C_D$, $Vv \ x \ V_H$ e contribuições de arrasto. Ainda foram apresentados resultados das polares para condições de decolagem, cruzeiro e pouso. Assim tem-se:

Figura 16.1 - Coeficiente de sustentação versus ângulo de ataque (°)

A análise da figura 16.1 demonstra que a aeronave em projeto apresenta um coeficiente de sustentação máximo de 2,06 quando o ângulo de ataque se torna crítico (estol) de 16°. Percebe-se que mesmo para ângulo de ataque nulo a aeronave já produz sustentação.
Comparação das polares (Real x Roskan)

Figura 16.2 - Polares preliminar e atual

A análise da figura 16.2 evidencia a boa predição apontada pelo método de cálculo sugerido por Roskan (para o presente caso $C_D = 0,013071+0,03856* C_L^2$) uma vez que as curvas estão bem próximas. Percebe-se uma aglomeração dos pontos a partir de

 $C_L = 1,5$ pela curva preliminar e um afastamento entre as curvas em análise.

Figura 16.3 - Curvas C_Lx alfa para condições de cruzeiro, decolagem e pouso.

A análise da figura 16.3 revela que com a utilização de superfície de hipersustentação (decolagem e pouso) as curvas se deslocaram para a esquerda evidenciando uma redução do ângulo de estol para valores suavemente inferiores a 15° e um aumento de CL de 0,1 entre cada uma das situações. No entanto percebe-se que o aumento de C_L torna-se mais acentuado para ângulos de ataque nulo. Torna questionável a inclusão de slats nas asas de forma a aumentar o ângulo de estol bem como os valores de C_L.

Figura 16.4 - Curvas C_Lx C_D para condições de cruzeiro, decolagem e pouso

A análise da figura 16.4 mostra que a polar na condição de decolagem se desloca levemente para a direita e para cima evidenciando o aumento de sustentação e arrasto induzido e parasita referentes à deflexão do flap para esta condição. Para condição de pouso o deslocamento tornou-se mais acentuado devido à maior deflexão do flap gerando mais arrasto e devido ao trem baixado que aumenta consideravelmente a parcela parasita do arrasto.

Figura 16.5 - Curvas Vvx V_H – Polar de velocidade

A análise da figura 16.5 mostra que a aeronave apresenta a maior razão de planeio para uma eficiência aerodinâmica de 18,81 onde as velocidades são:

 $V_{\rm H} = 56,42 \,\text{m/s}$ (203,13Km/h)

Vv = 2,99m/s

Para velocidade acima de 70m/s a eficiência aerodinâmica diminui acentuadamente.

Figura 16.6 - Contribuições de arrasto

17 Cálculo de desempenho

A partir de cálculos aerodinâmicos, obtém-se a Polar de Arrasto da aeronave, apresentada na figura abaixo.

CL	CD	C_L/C_D	$C_{\rm D}/C_{\rm L}^{-3/2}$	$C_{L}^{3/2}/C_{D}$	
-2.30°	0.1780	0.0196	9.0971	0.2606	
-2°	0.1998	0.0153	13.0946	0.1708	
0°	0.4913	0.0231	21.2784	0.0671	
2°	0.7518	0.0357	21.0756	0.0547	
4°	0.9933	0.0521	19.0843	0.0526	
6°	1.2140	0.0710	17.1047	0.0531	
8°	1.4257	0.0927	15.3812	0.0544	
10°	1.6241	0.1162	13.9769	0.0561	
12°	1.7968	0.1392	12.9120	0.0578	
14°	1.9356	0.1593	12.1515	0.0592	
16°	2.0126	0.1711	11.7630	0.0599	

Tabela 17.1 – Parâmetros aerodinâmicos para o cálculo de desempenho

17.1 Cálculo da Potência Requerida (P_{REQ}) ao nível do mar

A potência requerida pode ser calculada pela seguinte expressão:

$$P_{req} = W \times \sqrt{\frac{2 \times W}{\rho \times S}} \times \frac{C_D}{C_L^{3/2}} \qquad (Pullin, 1976)$$

Onde: Preq: potência requerida

W: peso máximo de decolagem

- ρ : densidade do ar
- S: área alar
- Sendo: W = 3740 x 9,8 = 36652N

$$\rho = 0.55 \text{kg/m}^3 \text{ (a } 25.000 \text{ft)}$$

$$\rho = 1,055 \text{kg/m}^3 \text{ (a 5.000 ft)}$$

 $S = 25m^2$

Então:

A 25.000ft:

$$P_{req} = 2676148 \cdot \frac{C_D}{C_L^{3/2}} [W]$$
$$P_{req} = 3588 \cdot \frac{C_D}{C_L^{3/2}} [HP]$$

α[°]	\mathbf{P}_{req} [HP]
-2.30°	935.2283326
-2°	613.1266657
0°	240.6544273
2°	196.4081573
4°	188.6974198
6°	190.445927
8°	195.4254375
10°	201.5010586
12°	207.3694135
14°	212.2990621
16°	215.0791623

Tabela 17.2 – Potência Requerida

A 5.000ft:

$$P_{req} = 1932258, 7 \cdot \frac{C_D}{C_L^{3/2}} [W]$$
$$P_{req} = 2591 \cdot \frac{C_D}{C_L^{3/2}} [HP]$$

α[°]	P _{req} [HP]
-2.30°	675.83171
-2°	443.068744
0°	173.90608
2°	141.932035
4°	136.359962
6°	137.6235
8°	141.221885
10°	145.61236
12°	149.853058
14°	153.41541
16°	155.424417

Tabela 3.1 – Potência Requerida

17.2 Determinação da Razão de Avanço da Hélice-J:

A razão de avanço da hélice é obtida através da seguinte expressão:

$$(\mathbf{P}_{\mathrm{REQ}})\mathbf{J} = \frac{\mathbf{V}}{\mathbf{n} \times \mathbf{D}}$$

Onde: J: razão de avanço da hélice

V: velocidade de avanço [m/s]

n: rotação da hélice [rps]

D: diâmetro da hélice [m]

Obs: Os cálculos se aplicam ao motor um turbodiesel Centurion 4.0, que desenvolve 330 HP de potência a 2300 rpm, para uma hélice tri-pá com 2,5 m de diâmetro.

<u>Situação A – Potência Máxima</u>: n = 2300 rpm = 38,3 rps ; 330 HP <u>Situação B – 75% da Potência Máxima</u>: n = 1725 rpm = 28,75 rps; 258 HP

17.2.1 Situação de potência máxima

Para:
$$n = 38,3rps;$$

 $D = 2,5m;$
Tem-se: $J = \frac{V}{n \cdot D} = \frac{V}{38,3 \cdot 2,5}$

	"J" para Potência máx cont. (330hp)													
α _F	V (km/h)	V (m/s)	V (m/s)	J	J	n (rpm)	n (rps)	D (m)						
-2.30°	450.001	125.000	172.978	1.304	1.805	2300	38.33	2.5						
-2°	424.654	117.959	163.234	1.231	1.703	2300	38.33	2.5						
0°	270.848	75.236	104.112	0.785	1.086	2300	38.33	2.5						
2°	218.945	60.818	84.161	0.635	0.878	2300	38.33	2.5						
4°	190.474	52.909	73.217	0.552	0.764	2300	38.33	2.5						
6°	172.299	47.861	66.231	0.499	0.691	2300	38.33	2.5						
8°	158.989	44.163	61.114	0.461	0.638	2300	38.33	2.5						
10°	148.964	41.379	57.261	0.432	0.598	2300	38.33	2.5						
12°	141.623	39.340	54.439	0.411	0.568	2300	38.33	2.5						
14°	136.449	37.903	52.450	0.396	0.547	2300	38.33	2.5						

17.2.2 Situação de potência de cruzeiro (75% Potência Máxima)

Para: n = 28,75 rps;

$$D = 2,5 m;$$

Tem-se:

$$J = \frac{V}{n \cdot D} = \frac{V}{28,75 \cdot 2,5}$$

	"J" para Potência 75% (258hp)													
α _F	V (km/h)	V (m/s)	V (m/s)		J	n (rpm)	n (rps)	D (m)						
-2.30°	450.001	125.000	172.978	1.478	2.045	2030	33.83	2.5						
-2°	424.654	117.959	163.234	1.395	1.930	2030	33.83	2.5						
0°	270.848	75.236	104.112	0.889	1.231	2030	33.83	2.5						
2°	218.945	60.818	84.161	0.719	0.995	2030	33.83	2.5						
4°	190.474	52.909	73.217	0.626	0.866	2030	33.83	2.5						
6°	172.299	47.861	66.231	0.566	0.783	2030	33.83	2.5						
8°	158.989	44.163	61.114	0.522	0.723	2030	33.83	2.5						
10°	148.964	41.379	57.261	0.489	0.677	2030	33.83	2.5						
12°	141.623	39.340	54.439	0.465	0.644	2030	33.83	2.5						
14°	136.449	37.903	52.450	0.448	0.620	2030	33.83	2.5						
16°	133.816	37.171	51.438	0.439	0.608	2030	33.83	2.5						

17.3 Determinação de "η_P" – Rendimento da Hélice

A hélice selecionada será de passo variável, tri-pá, utilizando o perfil Clark-Y.

17.3.1 Rendimento da hélice na condição de potência plena e potência de cruzeiro

Será admitido que esta hélice apresente um comportamento semelhante ao gráfico da figura a seguir - reprodução do gráfico 7.6.1 (Pullin, 1976).

Figura 17.1 - Curvas de eficiência para hélices tri-pás

Pode-se construir a seguinte tabela, considerando-se a razão de avanço da hélice para cada velocidade:

Máximas potências têm:

	rabeia 17.4 – rabeia de renumentos para potencia maxima													
	Rendimento da hélice para Potência máx. cont.													
α _F	V (km/h)	V (km/h)	J	J	η _P	β	η _P	β						
-2.30°	450.001	622.720	1.304	1.805	0.86	30°	0.84	40°						
-2°	424.654	587.644	1.231	1.703	0.86	30°	0.85	40°						
0°	270.848	374.805	0.785	1.086	0.83	20°	0.85	30°						
2°	218.945	302.980	0.635	0.878	0.79	20°	0.85	25°						
4°	190.474	263.581	0.552	0.764	0.75	20°	0.83	20°						
6°	172.299	238.430	0.499	0.691	0.72	20°	0.81	20°						
8°	158.989	220.011	0.461	0.638	0.71	20°	0.79	20°						
10°	148.964	206.140	0.432	0.598	0.68	20°	0.77	20°						
12°	141.623	195.980	0.411	0.568	0.65	20°	0.75	20°						
14°	136.449	188.821	0.396	0.547	0.64	20°	0.75	20°						
16°	133.816	185.178	0.388	0.537	0.63	20°	0.74	20°						

10

	Rendimento da hélice para Potência 75%													
α _F	V (km/h)	V (km/h)	J	J	η _P	β	η _P	β						
-2.30°	450.001	622.720	1.478	2.045	0.86	35°	0.83	45°						
-2°	424.654	587.644	1.395	1.930	0.86	35°	0.83	45°						
0°	270.848	374.805	0.889	1.231	0.85	25°	0.86	30°						
2°	218.945	302.980	0.719	0.995	0.82	20°	0.86	30°						
4°	190.474	263.581	0.626	0.866	0.78	20°	0.85	25°						
6°	172.299	238.430	0.566	0.783	0.75	20°	0.83	20°						
8°	158.989	220.011	0.522	0.723	0.74	20°	0.82	20°						
10°	148.964	206.140	0.489	0.677	0.72	20°	0.81	20°						
12°	141.623	195.980	0.465	0.644	0.71	20°	0.79	20°						
14°	136.449	188.821	0.448	0.620	0.7	20°	0.78	20°						
16°	133.816	185.178	0.439	0.608	0.68	20°	0.77	20°						

Tabela 17.5 - Tabela de rendimentos para potência 75°

17.4 Determinação da Potência Disponível (P_{dis})

A potência disponível é obtida através da seguinte equação:

 $P_{dis} = \eta_p(V) \times (\text{potencia do motor})$ (Pullin, 1976)

Estes cálculos serão executados inicialmente para o nível do mar quando serão consideradas duas situações:

A)	Potência ple	ena: P	= 350 HP	n = 2300 rpm	1 = 38,33 rps
----	--------------	--------	----------	---------------	---------------

B) Potência de cruzeiro: P = 262,5 HP n = 1725 rpm = 28,75 rps

Com os dados acima e considerando-se a equação de potência disponível, tem-se:

	Potência disponível (Potência máx. cont.)														
									2 Mo	otores	1 N	1 Motor			
	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft			
α _F	V (km/h)	V (km/h)	J	J	η _P	η _P	P _{REQ} (hp)	P _{REQ} (hp)	P _{DISP}	P _{DISP}	P _{DISP}	P _{DISP}			
-2.30°	450.0011	622.71985	1.3044	1.80499	0.86	0.84	675.83	935.23	510.84	385.56	255.42	192.78			
-2°	424.654	587.64403	1.2309	1.70332	0.86	0.85	443.07	613.13	510.84	390.15	255.42	195.075			
0°	270.8482	374.80469	0.7851	1.08639	0.83	0.85	173.91	240.65	493.02	390.15	246.51	195.075			
2°	218.9446	302.97958	0.6346	0.8782	0.79	0.85	141.93	196.41	469.26	390.15	234.63	195.075			
4°	190.4739	263.58124	0.5521	0.764	0.75	0.83	136.36	188.7	445.5	380.97	222.75	190.485			
6°	172.2986	238.43	0.4994	0.6911	0.72	0.81	137.62	190.45	427.68	371.79	213.84	185.895			
8°	158.9885	220.01123	0.4608	0.63771	0.71	0.79	141.22	195.43	421.74	362.61	210.87	181.305			
10°	148.9645	206.13977	0.4318	0.59751	0.68	0.77	145.61	201.5	403.92	353.43	201.96	176.715			
12°	141.6228	195.9803	0.4105	0.56806	0.65	0.75	149.85	207.37	386.1	344.25	193.05	172.125			
14°	136.4494	188.82113	0.3955	0.54731	0.64	0.75	153.42	212.3	380.16	344.25	190.08	172.125			
16°	133.8165	185.17771	0.3879	0.53675	0.63	0.74	155.42	215.08	374.22	339.66	187.11	169.83			

Tabela 17.6 - Potência disponível e Potência requerida

Para a potência de cruzeiro, temos:

	Potência disponível (Potência 75%)													
									2 Mo	tores	1 M	otor		
	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft		
α _F	V (km/h)	V (km/h)	J	J	η _P	η _P	P _{REQ} (hp)	P _{REQ} (hp)	P _{DISP}	P _{DISP}	P _{DISP}	P _{DISP}		
-2.30°	450.0011	622.71985	1.4778	2.04506	0.86	0.83	675.83	935.23	399.384	374.994	199.692	187.497		
-2°	424.654	587.64403	1.3946	1.92987	0.86	0.83	443.07	613.13	399.384	374.994	199.692	187.497		
0°	270.8482	374.80469	0.8895	1.23089	0.85	0.86	173.91	240.65	394.74	388.548	197.37	194.274		
2°	218.9446	302.97958	0.719	0.99501	0.82	0.86	141.93	196.41	380.808	388.548	190.404	194.274		
4°	190.4739	263.58124	0.6255	0.86562	0.78	0.85	136.36	188.7	362.232	384.03	181.116	192.015		
6°	172.2986	238.43	0.5658	0.78302	0.75	0.83	137.62	190.45	348.3	374.994	174.15	187.497		
8°	158.9885	220.01123	0.5221	0.72253	0.74	0.82	141.22	195.43	343.656	370.476	171.828	185.238		
10°	148.9645	206.13977	0.4892	0.67698	0.72	0.81	145.61	201.5	334.368	365.958	167.184	182.979		
12°	141.6228	195.9803	0.4651	0.64361	0.71	0.79	149.85	207.37	329.724	356.922	164.862	178.461		
14°	136.4494	188.82113	0.4481	0.6201	0.7	0.78	153.42	212.3	325.08	352.404	162.54	176.202		
16°	133.8165	185.17771	0.4395	0.60814	0.68	0.77	155.42	215.08	315.792	347.886	157.896	173.943		

Tabela 17.7 - Potência disponível (75%) e Potência requerida

17.4.1 Curvas de "potência x velocidade"

Com base na tabela 2.6, pode-se construir seguinte gráfico

Figura 17.2 - Gráfico da Potência disponível x Potência Requerida

Com base na tabela 2.7, pode-se construir seguinte gráfico;

Figura 17.3 - Gráfico da Potência disponível (75%) x Potência Requerida

17.4.2 Resultados obtidos

A partir da figura 2.3 tem-se:

Velocidade máxima nivelada ao nível do mar: 431 km/h (ponto de interseção das curvas P_{disp 100%} e P_{req})

Velocidade de cruzeiro ao nível do mar: 475 km/h (ponto de interseção das curvas $P_{disp (cruzeiro)} e P_{req}$)

A partir da figura 2.4 tem-se:

Velocidade máxima nivelada ao nível do mar: 400 km/h (ponto de interseção das curvas P_{disp 100%} e P_{req})

Velocidade de cruzeiro ao nível do mar: 465 km/h (ponto de interseção das curvas $P_{disp (cruzeiro)} e P_{req}$)

17.5 Determinação da razão de subida ("R/S")

A razão de subida é obtida através da seguinte equação:

$$V_{v} = \frac{P_{dis} - P_{req}}{W}$$
 (Pullin, 1976)

Onde: P_{dis} = Potencia disponível em WATTS (hp x 745,7)

 V_v : razão de subida = R/S = V. sen γ

W: peso da aeronave

$$R/S = \frac{\left[\left(P_{dis} - P_{req} \right)_{HP} \cdot 746 \right]}{7867,62} \quad [m/s]$$

	Razão de subida (Potência max. cont.)													
				2 Mot	ores		1 Motor							
	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft 25000ft 5000ft			25000ft				
α_{F}	V (km/h)	V (km/h)	P _{DISP} -P _{REQ}	P _{DISP} -P _{REQ}	R/S (m/s)	R/S (m/s)	P _{DISP} -P _{REQ}	P _{DISP} -P _{REQ}	R/S (m/s)	R/S (m/s)				
0°	270.8482	374.80469	319.11	149.496	6.4881	3.0395	72.604	-45.58	1.476150291	-0.9267004				
2°	218.9446	302.97958	327.33	193.742	6.6551	3.9391	92.698	-1.333	1.884693378	-0.0271052				
4°	190.4739	263.58124	309.14	192.273	6.2853	3.9092	86.39	1.7876	1.756443447	0.03634428				
6°	172.2986	238.43	290.06	181.344	5.8973	3.687	76.216	-4.551	1.549599641	-0.0925274				
8°	158.9885	220.01123	280.52	167.185	5.7034	3.3991	69.648	-14.12	1.416054198	-0.2870904				
10°	148.9645	206.13977	258.31	151.929	5.2518	3.089	56.348	-24.79	1.145634899	-0.503939				
12°	141.6228	195.9803	236.25	136.881	4.8033	2.783	43.197	-35.24	0.878260827	-0.7165736				
14°	136.4494	188.82113	226.74	131.951	4.6101	2.6828	36.665	-40.17	0.745447973	-0.816801				
16°	133.8165	185.17771	218.8	124.581	4.4485	2.5329	31.686	-45.25	0.644217048	-0.9199856				

Tabela 17.8 - Razão de subida para potência máxima

Tabela 17.9 - Razão de subida para 75% da potência máxima

	Razão de subida (Potência 75%)									
2 Motores					1	Motor				
	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft	5000ft	25000ft
α_{F}	V (km/h)	V (km/h)	P _{DISP} -P _{REQ}	P _{DISP} -P _{REQ}	R/S (m/s)	R/S (m/s)	P _{DISP} -P _{REQ}	P _{DISP} -P _{REQ}	R/S (m/s)	R/S (m/s)
0°	270.8482	374.80469	220.83	147.894	4.4899	3.0069	23.464	-46.38	0.477057885	-0.942986
2°	218.9446	302.97958	238.88	192.14	4.8567	3.9065	48.472	-2.134	0.985510212	-0.0433907
4°	190.4739	263.58124	225.87	195.333	4.5923	3.9714	44.756	3.3176	0.909959661	0.06745155
6°	172.2986	238.43	210.68	184.548	4.2834	3.7521	36.526	-2.949	0.742640389	-0.0599563
8°	158.9885	220.01123	202.43	175.051	4.1158	3.559	30.606	-10.19	0.622269792	-0.2071264
10°	148.9645	206.13977	188.76	164.457	3.8377	3.3437	21.572	-18.52	0.438584888	-0.3765822
12°	141.6228	195.9803	179.87	149.553	3.6571	3.0406	15.009	-28.91	0.305155073	-0.5877529
14°	136.4494	188.82113	171.66	140.105	3.4902	2.8486	9.1246	-36.1	0.185517064	-0.7339093
16°	133.8165	185.17771	160.37	132.807	3.2605	2.7002	2.4716	-41.14	0.050251123	-0.836362

17.5.1 Curvas de "razão de subida x velocidade"

A partir da tabela 2.8 é possível levantar as curvas da figura 2.4:

Figura 17.4 - Gráfico da Razão de subida (max. Cont) x Velocidade

A partir da tabela 2.9 é possível levantar as curvas da figura 2.5:

Figura 17.5 - Gráfico da Razão de subida (75%) x Velocidade

17.5.2 Resultados obtidos

A partir da figura 2.5 obtém-se:

• Máxima razão de subida a plena potência 6,48m/s

•	Velocidade de máxima razão de subida	270,8km/h
•	Máxima razão de subida (cruzeiro)	6,49m/s
•	Velocidade de máxima razão de subida (cruzeiro)	374,8km/h

A partir da figura 2.6 obtém-se:

•	Máxima razão de subida a plena potência	4,5m/s
•	Velocidade de máxima razão de subida	270,8km/h
•	Máxima razão de subida (cruzeiro)	3,0m/s
•	Velocidade de máxima razão de subida (cruzeiro)	374,8km/h

17.6 DETERMINAÇÃO DE "E"- AUTONOMIA (ENDURANCE)

A potência será calculada pela expressão de Breguet:

$$E = \frac{\eta_P}{C_P} \times \frac{C_L^{3/2}}{C} \times \sqrt{\rho \times S} \times \left(\frac{1}{\sqrt{W_1}} - \frac{1}{\sqrt{W_0}}\right) (\text{Pullin, 1976})$$

Onde: E: autonomia

- ρ: densidade do ar
- S: área alar
- C_p: consumo específico
- η_p: rendimento da hélice
- Wo: peso máximo de decolagem em 1000kgf
- W1: peso máximo com os tanques vazios em 1000kgf

Sendo para 5000 ft:

$$\label{eq:rho} \begin{split} \rho &= 1,05 kgf/m^3\\ S &= 251 m^2\\ W_1 &= 3011 kgf = 3,011 tonf\\ W_0 &= 3740 kgf = 3,74 tonf\\ C_p &= 0,65 \ lbf/bhp*hora \mbox{(potência de cruzeiro)} \end{split}$$

Obs: a densidade do combustível é 0,72 kg/L

Substituindo os valores:

$$E = 2,392 \cdot \frac{\eta_p}{0,65} \cdot \frac{C_L^{3/2}}{C_D} \cdot \sqrt{1,05 \cdot 251} \cdot \left(\frac{1}{\sqrt{3,011}} - \frac{1}{\sqrt{3,74}}\right)$$

Considerando-se, então, a equação de Breguet e aplicando-se um fator de correção de 85%, devido a impossibilidade de se manter o C_L constante durante todo o vôo como prevê a formulação de Breguet, tem-se:

Aut	Autonomia (Endurance) - "E" (h) - máx. cont 5000ft						
α _F V (km/h)		C _L ^{3/2} /C _D	η _P	C _P	E (h)		
-2.30°	450.0011	3.8377186	0.86	0.38	4.5614		
-2°	424.654	5.8538364	0.86	0.38	6.9577		
0°	270.8482	14.914096	0.83	0.38	17.108		
2°	218.9446	18.273901	0.79	0.38	19.952		
4°	190.4739	19.020627	0.75	0.38	19.716		
6°	172.2986	18.845996	0.72	0.38	18.753		
8°	158.9885	18.365793	0.71	0.38	18.022		
10°	148.9645	17.812031	0.68	0.38	16.74		
12°	141.6228	17.307968	0.65	0.38	15.548		
14°	136.4494	16.906072	0.64	0.38	14.954		
16°	133.8165	16.687545	0.63	0.38	14.53		

Tabela 17.10 - Autonomia da aeronave (máx. Contínua)

Tabela 17.11 - Autonomia da aeronave

	Autonomia (Endurance) - E (h) - 75% - 25000ft					
α _F	V (km/h)	C _L ^{3/2} /C _D	η _P	C _P	E (h)	
-2.30°	450.0011	3.8377186	0.86	0.36	4.8148	
-2°	424.654	5.8538364	0.86	0.36	7.3442	
0°	270.8482	14.914096	0.85	0.36	18.494	
2°	218.9446	18.273901	0.82	0.36	21.86	
4°	190.4739	19.020627	0.78	0.36	21.643	
6°	172.2986	18.845996	0.75	0.36	20.62	
8°	158.9885	18.365793	0.74	0.36	19.827	
10°	148.9645	17.812031	0.72	0.36	18.709	
12°	141.6228	17.307968	0.71	0.36	17.927	
14°	136.4494	16.906072	0.7	0.36	17.264	
16°	133.8165	16.687545	0.68	0.36	16.554	

Com base na tabela 7.1 tem-se as curvas de Autonomia x Velocidade, da figura 8.1.:

Através do gráfico anterior pode-se obter:

•	Autonomia máxima à potência máxima	21,86 h
•	Velocidade correspondente	218,94 km/h

Obs.: Como não é possível manter o motor funcionando a plena potência por longos períodos, os valores acima são puramente teóricos. Um outro fator que agrega erros aos resultados é que a formulação de Breguet considera que o consumo específico de combustível é constante durante o vôo de cruzeiro.

17.7 CÁLCULO DO ALCANCE – R (RANGE):

Será feito através da formulação de Breguet:

$$R = 603 \times \frac{\eta_P}{C_P} \times \frac{C_L}{C_D} \times \ln \frac{W_0}{W_1}$$
(Pullin, 1976)

Onde: R: alcance [km]

C_p: consumo específico de combustível

 η_p : rendimento da hélice

Wo: peso máximo de decolagem

W1: peso máximo com tanques vazios

Sendo: $W_1 = 3011 \text{ kgf}$ $W_0 = 3740 \text{kgf}$

Aplica-se um fator de correção de 85%, devido a impossibilidade de se manter o C_L constante durante todo o vôo como prevê a formulação de Breguet. Tem-se, então, a seguinte tabela:

	Alcance - "R" (km) - máx. cont.					
α _F	V (km/h)	C _L /C _D	η_{P}	C _P	R (km)	
-2.30°	450.0011	9.0970807	0.86	0.38	2689	
-2°	424.654	13.094566	0.86	0.38	3870.6	
0°	270.8482	21.27836	0.83	0.38	6070.3	
2°	218.9446	21.075643	0.79	0.38	5722.7	
4°	190.4739	19.084269	0.75	0.38	4919.6	
6°	172.2986	17.104729	0.72	0.38	4232.9	
8°	158.9885	15.381219	0.71	0.38	3753.5	
10°	148.9645	13.976919	0.68	0.38	3266.7	
12°	141.6228	12.912036	0.65	0.38	2884.7	
14°	136.4494	12.15149	0.64	0.38	2673	
16°	133.8165	11.76298	0.63	0.38	2547.1	

Tabela 17.12 - Alcance da aeronave (max. Cont)

Tabela 17.13 - Alcance da aeronave (75%)

	Alcance - "R" (km) - 75%					
α _F	V (km/h)	C _L /C _D	η_{P}	C _P	R (km)	
-2.30°	450.0011	9.0970807	0.86	0.36	2838.4	
-2°	424.654	13.094566	0.86	0.36	4085.7	
0°	270.8482	21.27836	0.85	0.36	6561.9	
2°	218.9446	21.075643	0.82	0.36	6270	
4°	190.4739	19.084269	0.78	0.36	5400.6	
6°	172.2986	17.104729	0.75	0.36	4654.3	
8°	158.9885	15.381219	0.74	0.36	4129.5	
10°	148.9645	13.976919	0.72	0.36	3651.1	
12°	141.6228	12.912036	0.71	0.36	3326	
14°	136.4494	12.15149	0.7	0.36	3086	
16°	133.8165	11.76298	0.68	0.36	2902	

Figura 17.7 - Gráfico do Alcance x Velocidade

Através do gráfico anterior pode-se obter:

•	Alcance máximo à potência de cruzeiro	4264km
•	Velocidade correspondente	180,12km/h

Obs.: Como não é possível manter o motor funcionando a plena potência por longos períodos, os valores acima são puramente teóricos. Um outro fator que agrega erros aos resultados é que a formulação de Breguet considera que o consumo específico de combustível é constante durante o vôo de cruzeiro.

17.8 VELOCIDADE DE ESTOL

Com base na polar de cruzeiro, podemos obter o valor de CL máx

$$V_{stall} = \sqrt{\frac{2 \times W}{\rho \times S \times C_{L_{\text{max}}}}} = \sqrt{\frac{2 \times 7867, 62}{1, 23 \times 17, 41 \times 1, 8}}$$

Para Pouso;

$$C_{L max} = 2,084$$

 $V_{stall} = 36,52 \text{ m/s}$

Para Decolagem;

$$C_{L max} = 2,06$$

 $V_{stall} = 36,74$ m/s

Para Cruzeiro;

$$C_{L max} = 2,013$$

 $V_{stall} = 37,17 \text{ m/s}$

17.9 CÁLCULO DA DISTÂNCIA DA CORRIDA DE DECOLAGEM

A decolagem é composta de três de fases:

Figura 17.8 - Diagrama esquemático da corrida de decolagem

- Corrida de aceleração
- Rotação
- Subida

Considera-se a distância percorrida pela aeronave desde o repouso até atingir a distancia de 50 ft (15 m) segundo a norma FAR part 23.

Dentro destas três fases se atinge seis velocidades de controle:

V_{mcg} - velocidade mínima de controle no solo

- $V_{cef}-$ velocidade critica de falha no motor
- V₁-velocidade de decisão
- V_R- velocidade de rotação
- V Lof-velocidade de inicio de subida
- V₂ velocidade de segurança de decolagem (para transpor um obstáculo imaginário)

A distancia percorrida ate o ponto de rotação pode ser calculada através da seguinte expressão:

$$S = \frac{V_L^2}{2\mu g}$$

onde:

µ=0,3

g=9,81

Considerando $V_L = 1,15.V_s = 1,15.36,74 = 42,25$ m/s, temos:

$$S = 303 m$$

17.9.1 Cálculo da distância horizontal percorrida na rotação (SR)

Para se determinar a distancia horizontal percorrida na rotação é necessário determinar o raio de giração da aeronave através da seguinte expressão:

$$R = \frac{V_R^2}{\Delta n * g}$$

Onde:

R : raio de giração

 V_R : velocidade de rotação= 1,2. V_s = 44,08 m/s

 Δ n: acréscimo de fator de carga que será assumido ser igual a 0.7.

Assim, R = 283,05 m, e assumindo um ângulo de subida de 5° pode se determinar a distância de rotação através da seguinte expressão:

$$S_R = R \operatorname{sen} \gamma$$

Logo

$$S_R = 283,05$$
 . sen $5^\circ = 24,69m$

17.9.2 Cálculo da distância horizontal percorrida na subida (S_s)

A distância de subida pode ser determinada através da seguinte expressão:

$$S_s = \frac{H-h}{\tan \gamma}$$

Onde:

S_s: distância de subida

H: altura do obstáculo

h: altura ao terminar a rotação

 γ : ângulo de subida

A altura h é determinada através da seguinte expressão:

$$h = \frac{S_R^2}{2 \cdot R} = \frac{24,69^2}{2 \cdot 283,05} = 1,05$$

Sendo H= 15 m e $\gamma = 5^{\circ}$ então

 $S_s = (15-1,075) / tg 5^\circ = 159,16 m$

A distância total da corrida de decolagem é portanto igual a :

$$S = S + S_R + S_s$$

S = 303 + 24,69 + 159,16 = 487,11m

17.9.3 Cálculo da distância da corrida de pouso (Lg)

Figura 17.9 - Diagrama esquemático da corrida de pouso

É dado por:
$$L_g = \frac{V^2}{2 \times \mu \times g}$$

Onde: Dg: distância de corrida de pouso

- V: velocidade da aeronave no momento do toque no solo (admite-se V = 1,3 V_s)
- V_s: velocidade de estol com flapes
- µ: coeficiente médio de desaceleração na frenagem
- g: aceleração gravitacional

$$\mu = 0.3 \text{ (valor típico)}$$
$$\sigma = 9.81 \text{ m/s}^2$$

$$g = 9,81 \text{ m/s}^2$$

Substituindo estes valores na expressão de lg, obtém-se:

$$Dg = \frac{36,52^2}{2 \times 0,3 \times 9,81} = 299,8m$$

18 Cálculo de Estabilidade e Controle

18.1 Estabilidade Longitudinal Estática

18.1.1 Determinação da corda média aerodinâmica:

$$\stackrel{=}{c} = \frac{2}{3} \cdot c_r \cdot \left(\frac{1 + \lambda + \lambda^2}{\lambda + 1}\right)$$

onde: $c_r = corda$ na raiz (=S/b)

 $\lambda = afilamento da asa$ = c = corda média aerodinâmica

Como a asa da aeronave é trapeizodal, e o afilamento λ vale 0,7, então:

 $\ddot{c} = 1,3419 \text{ m}$

18.1.2 Determinação do número de Reynolds médio da asa:

O número de Reynolds é definido pela fórmula:

$$\operatorname{Re} = \frac{Vc}{V}$$

Onde: Re = número de Reynolds

v = viscosidade cinemática do ar (m²/s)

Os valores de ν e ρ são obtidos pela temperatura do ar. Considerando que, em velocidade de cruzeiro, a aeronave esteja a 25 mil pés de altitude:

 $v = 3,01 \text{ x } 10-4 \text{ ft}^2/\text{s}$

 $\rho = 1,066 lb.sec^2/ft^4$

$$n = 13,22 \text{ x } 10-6 \text{ m}^2/\text{s}$$

A velocidade de cruzeiro vale 450 km/h. Isto equivale a uma velocidade de 410ft/s. Dessa forma:

$$Re = 6,9 \cdot 10^6$$
 $r = 1,19 \text{ kg/m}^3$

18.1.3 Cálculo de
$$\frac{\partial C_L}{\partial \alpha}$$

O perfil aerodinâmico da aeronave na ponta é um NASA LS-421, e na raiz, NASA LS-417. De posse das curvas $C_L \propto \alpha$ dos perfis é possível estimar o valor de a_0 . O valor a_0 é o valor da inclinação da reta.

Plotando alguns pontos do gráfico nas tabelas abaixo, obtém-se:

Tabela	18.1	- Car	acterística	dos	perfis	da	asa
--------	------	-------	-------------	-----	--------	----	-----

LS-417		
a (rad)	CL	
-2	0,3234	
13,7	1,9263	

LS-421				
α (rad)	CL			
-2,3	0,27			
13,4	1,8047			

Para o perfil LS-421:

 $\frac{\partial C_L}{\partial \alpha} = 5,60 / rad$

Para o perfil LS-417:

 $\frac{\partial C_{L}}{\partial \alpha} = 5,85 / rad$

Dividindo a asa como se segue, é possível calcular um valor representativo de a₀.

Figura 18.1 - Esquema da divisão da asa para cálculo do a₀ médio

Posição	a ₀	Área equivalente
1	5,63	2,67m ²
2	5,69	2,97m ²
3	5,57	3,27m ²
4	5,81	3,57m ²

Tabela 18.2 – Cálculo de a₀ médio

O valor médio de a₀ será calculado a partir da média das inclinações ponderadas pelas suas áreas de influência, ou seja:

$$a_0 = \sum_{i=1}^N \frac{S_i \cdot a_{0_i}}{S}$$

Assim:

$$a_0 = \frac{5,63 \cdot 2,67 + 5,69 \cdot 2,97 + 5,57 \cdot 3,27 + 5,81 \cdot 3,57}{12,5}$$

 $a_0 = 5,67/rad$

18.1.3.1 Determinação do valor tridimensional a_w

Uma vez conhecido o valor de a_0 médio, pode-se determinar o valor de a_w através da expressão:

$$a_{w} = \frac{\pi \cdot A}{1 + \sqrt{\frac{A^{2}}{4k^{2}} \cdot (\beta^{2} + tg^{2}(\Lambda_{c/2})) + 1}}$$

onde: A = alongamento
k = função da inclinação da curva C_L x
$$\alpha$$

 $\beta = (1 - M^2)^{1/2}$
M = número de Mach
 $\Lambda_{1/2}$ = enflechamento a 50% da corda

O valor de k pode ser escrito pela fórmula:

$$k = \frac{a_0}{2\pi} = \frac{5,67}{2\pi} = 0,90 \, rad^{-1}$$

O valor da velocidade do som a 25 mil pés é:

$$c = 309, 8\frac{m}{s}$$

Número de Mach:

$$M = \frac{V_{cr}}{c} = \frac{125m/s}{309,8m/s} = 0,40$$

Expressão para cálculo de β:

$$\beta^2 = 1 - M^2 = 1 - 0,40^2 \therefore \beta = 0,84$$

Substituindo estes valores na equação de a_w e como a asa da aeronave tem enflechamento de 6° e A vale 10,24, temos:

 $a_w = 5,08 rad^{-1}$

18.1.3.2 Determinação do Ângulo de Sustentação Nula da Asa a_{0w}

a) Efeito da torção aerodinâmica

 $\alpha_{ow} = (\alpha_{oR}) + J \cdot \varepsilon$

onde: $\alpha_{_{oR}}$ = ângulo de ataque para sustentação nula da raiz em relação à corda da raiz

$$\label{eq:expansion} \begin{split} \epsilon &= torção ~aerodinâmica da asa (~i_P{-}i_R ~) \\ J &= fator ~dependente ~do ~alongamento e ~do ~afilamento da asa \end{split}$$

O valor da torção ε é de 0,2°. Pela figura 4.2a em UTSCH[1] encontra-se um valor de J igual a -0,43.

Pela curva do perfil, tem-se:

 $\alpha_{_{oR}} = -4,2^{\circ}$

Assim:

 $\alpha_{ow} = -4, 2 - 0, 43 \cdot 2$ \therefore $\alpha_{ow} = -5, 06^{\circ}$

 $\alpha_{ow} = -0,0883 rad$

b) Efeitos dos flapes

Como a aeronave tem deflexão dos flapes igual a zero durante o cruzeiro, não será considerada a sua contribuição.

18.1.4 Determinação do Centro Aerodinâmico da Asa how

A posição do centro aerodinâmico da asa pode ser obtida diretamente dos gráficos 4.4a e 4.4b de UTSCH[1] em função do afilamento 1, do ângulo de enflechamento da linha de 25% de corda $L_{c/4}$ e do alongamento A. Para valores de alongamento intermediários interpola-se ou extrapola-se usando 1/A como variável.

Dessa forma:

A = 10,24

 $\lambda = 0,7$

 $L_{c/4} = 6,65^{\circ}$

Como não há uma curva para o valor de 'A' pretendido, será necessário extrapolar os valores existentes na figura.

λ=0,6		
А	$\frac{X_{ac}}{\overline{c}}$	
4	0,24	
6	0,248	
10,24	0,264	

Tabela 18.3 – Interpolação para cálculo de A com λ=0,6

Tabela 18.4 – Interpolação para cálculo de A com λ=0,8

λ=0,8		
А	$\frac{X_{ac}}{\overline{c}}$	
4	0,23	
6	0,24	
10,24	0,2612	

$$\frac{X_{ac}}{\overline{c}} = 0,2626$$

Então:

$$h_{ow} = 0,243$$

18.1.5 Determinação do Coeficiente de Momento da Asa C_{mow} para $C_{Lw} = 0$

Tem-se duas contribuições importantes para o coeficiente de momento, a da distribuição básica de sustentação C_{moT} e a do coeficiente de momento do perfil C_{moS} .

a) C_{moT}

 $C_{moT} = -G \cdot \varepsilon \cdot A \cdot a_o \cdot \tan \Lambda_{c/4}$

onde: G = fator que depende de A e λ e é obtido através da figura

4.5

A = alongamento da asa $\varepsilon = (i_P - i_R)$ torção geométrica da asa $\Lambda_{c/4} =$ enflechamento a ¹/₄ da corda $a_0 = \frac{\partial C_L}{\partial \alpha}$ médio do perfil

Como não torção geométrica, C_{moT} vale zero.

b) C_{moS}

 $C_{mos} = E \cdot C_{mac} - E' \cdot \Delta C_{mac}$

Onde: C_{mac} = Coeficiente médio de momento dos perfis da asa. Obtido diretamente da curva do perfil. E = Fator que depende de A e λ e é obtido pela figura 4.5b ΔC_{mac} = Incremento de C_{mac} devido ao flape que deve ser

obtido das curvas do perfil com flape, pela figura 4.5e

E' - Fator que depende de A, λ , $\frac{bf}{b}$ e é obtido pela figura

4.5d

Assim:

 $C_{mac} = -0,09$

18.1.5.1 Cálculo de E

Pelo fato de não haver uma curva correspondente ao alongamento de 10,24, será necessário interpolar alguns valores da figura 4.5b. Na tabela abaixo estão listados estes valores para $\lambda = 0,7$.

А	Е
9	1,025
6	1,075
10,24	1,004

Tabela 18.5 – Alongamento para λ=0,7

E = 1,004

Como a deflexão dos flapes é 0° , temos $\Delta C_{mac} = 0$. Dessa forma, tem-se:

 $C_{moS} = 1,004 (-0,09) = -0,09036$

Calcula-se o coeficiente de momento da asa:

 $C_{mow} = C_{mot} + C_{moS} = -0,09036$

18.1.6 Determinação da Curva de Sustentação do Conjunto Asa-Fuselagem - awb

O valor de awb pode ser determinado conhecendo o valor de aw através das fórmulas:

 $a_{wb} = K_{wb} \cdot a_w$

$$K_{wb} = 1 - 0.25 \cdot \left(\frac{d}{b}\right)^2 + 0.025 \cdot \left(\frac{d}{b}\right)$$

Onde 'd' é o máximo diâmetro equivalente da fuselagem, ou seja, para a máxima seção da fuselagem faz-se $S_{max} = 3,14(d^2/4)$, obtendo-se 'd'. 'b' é o comprimento da fuselagem. Este valor é razoável, porém para (d/b) < 0,5 a aproximação é razoável.

Medindo a vista frontal, tem-se:

d = 1,79 m

Substituindo os valores:

 $K_{wb} = 0,9918$

 $a_{wb} = 0,9918 . 5,08$

 $a_{wb} = 5,04 rad^{-1}$

18.1.7 Determinação do Ângulo de Sustentação Nula do Conjunto Asa-Fuselagem - a_{owb}

Este ângulo pode ser determinado usando-se a fórmula:

$$\alpha_{\rm owb} = \frac{K_2}{K_1} \cdot \alpha_{\rm ow} + \alpha_{\rm of} \left(1 - \frac{K_2}{K_1} \right)$$

onde:
$$K1, K2 =$$
 coeficientes obtidos na figura 4.8

 αo_w = ângulo de sustentação nula da asa

 αo_f = ângulo de sustentação nula da fuselagem. Determina-

se com o desenho da fuselagem estimando-se qual a linha de centro de um corpo de revolução equivalente, construído em torno da fuselagem.

Para a determinação de K1 e K2, algumas interpolações são necessárias.

А	K1	K2
6	1,1	0,94
16	1,15	0,97
10,24	1,1212	0,952

Tabela 18.6 - Valores de K1 e K2 interpolados

K1 = 1,1212K2 = 0,952

Seja:

 $\alpha_{ow} = \frac{-4, 2-4, 0}{2} = -4, 1^{o} = -0,071558$ rad

 $\alpha_{of} = 3,48^{\circ} = 0,06073 \text{ rad}$

$$\alpha_{owb} = \frac{0.952}{1.1212} \cdot \left(-0.071558\right) + 0.06076 \cdot \left(1 - \frac{0.952}{1.1212}\right)$$

 $\alpha_{owb} = -0,0516$ rad $= -2,95^{\circ}$

18.1.8 Determinação de Downwash

O método proposto para o cálculo de *downwash* é o proposto no ESDU, onde obtém-se para cada ângulo de ataque um valor específico de Cl, e consequentemente um valor

específico de *downwash*. Para o cálculo do *downwash*, deve-se conhecer d, conforme mostrado na figura abaixo:

figura 18.2 Esquema da linha de downwash

Para o avião em projeto:

y = 2,1m

X = 4,5m

A semi-envergadura S é igual a 8m. O alongamento A vale 10,24. O afilamento da asa é 0,7. Logo:

X/S = 0,6923

Utiliza-se a figura 4.6 b para determinar o valor de $\frac{d}{S \cdot C_L}$ para o valor de alongamento A = 10,24.

А	$\frac{d}{S \cdot C_{\scriptscriptstyle L}}$
9	0,058
12	0,05
10,24	0,0546

Tabela 18.7 –	Valores o	de interi	olacão	de A
1 40014 1017		ac meet	Joinguo	

$$\frac{d}{S \cdot C_L} = 0,0546$$

 C_L de cruzeiro calculado foi de 0,34.

Assim:

d = 1,20m

Calculando o valor de h:

$$h = d + y = 3,30m$$

$$\frac{h}{S} = \frac{3,30}{6,5} = 0,509$$

Para este valor de h/S, e afilamento 0,7, tem-se:

λ=1		
A = 9		
X/S	ε/C _L	
0,6	2,25°	
0,8 2,15°		
0,6923	2,20°	

Tabela 18.8 – Valores de interpolação de X/S para A=9 e λ =1

Tabela 18.9 – Valores de interpolação de X/S para A=12 e λ =1

λ=1		
A = 12		
X/S	ϵ/C_L	
0,6	1,8°	
0,8	1,7°	
0,6923	1,75°	

λ=0,5		
A = 9		
X/S	ϵ/C_L	
0,6	2,34°	
0,8	2,29°	
0,6923	2,31°	

Tabela 18.10 – Valores de interpolação de X/S para λ =0,5 e A=9

Tabela 18.11 –	- Valores (de interpolação	de X/S para	λ=0.5 e A=12
I abela Ionii	, and es	ac meerponação	at mo para	

λ=0,5		
A = 12		
X/S	ϵ/C_L	
0,6	1,88°	
0,8	1,74°	
0,6923	1,81°	

Interpolando para achar o valor correspondente ao alongamento de 10,24:

-

λ=1,0				
А	ϵ/C_L			
9	2,20°			
12	1,75°			
10,24	2,014°			

Tabela 18.12 – Valores de interpolação de A para λ =1

Tabela 18.13 -	Valores	de inter	polação	de A	para λ =	=0,5
----------------	---------	----------	---------	------	----------	------

λ=0,5				
А	ϵ/C_L			
9	2,31°			
12	1,81°			
10,24	2,103			

Então:
$$\epsilon/C_{\rm L} = 2,06^{\circ}$$

 $\epsilon/C_{\rm L} = 0,03595 \text{ rad}$

18.1.9 Inclinação da Curva de Sustentação Asa-Fuselagem

 $a_{wb} = 5,04 rad^{-1}$

 $C_L = a_{wb} . \alpha + b$

 $C_{\rm L} = 5,04 .\alpha + b$

18.1.10 Ângulo de Sustentação Nula do Conjunto Asa-Fuselagem

 $\alpha_{owb} = -0,0516$ rad

Para CL = 0:

 a_{wb} . $\alpha+b=0$

Então:

5,04.(-0,0516) + b = 0

b = 0,260

Reescrevendo a equação:

 $C_L = 5,04 .\alpha + 0,206$

Na equação do downwash:

$$\varepsilon = 0,1812 \ \alpha + 0,009$$

Logo:

$$\frac{\partial \varepsilon}{\partial \alpha} = 0,1812 [rad/rad]$$

18.1.11 Determinação do Incremento de C_{mo} devido à Fuselagem (C_{mo})b

Devido à presença da fuselagem, é necessário fazer uma correção no valor de C_{m0} . Tal correção é feita através do gráfico da figura 4.9. Para a determinação deste fator, é necessário conhecer algumas dimensões da aeronave.

 $S = 25,0m^{2}$ $I_{bf} = 7,23m$ $I_{b} = 13,0m$ w = 1,53m $S_{bf} = 10,03m^{2}$ $S_{b} = 16,94m^{2}$

Onde:

 S_b = área total em planta da fuselagem

 l_b = comprimento total da fuselagem

w = largura da fuselagem

 l_{bf} = distância do início da fuselagem, até a linha de c/4 da asa

 S_{bf} = área de fuselagem, até a linha de c/4 da asa.

 i_w = ângulo entre a linha de sustentação nula da asa, e a linha de momento nulo do corpo

S = área em planta da asa

c =corda média aerodinâmica

Considerando que a massa é uniformemente distribuída em relação ao eixo central da aeronave e que a fuselagem não produz momento, pode-se determinar o ângulo i_w (ângulo de sustentação nula da asa):

 $i_w = -4, 1^\circ = -0,07155$ rad

É necessário calcular as seguintes equações:

$$\frac{W^2}{S_b} = 0,138$$

$$\frac{S_{bf} \cdot l_{bf}}{S_b \cdot l_b} = 0,329$$

De acordo com a figura 4.9, determina-se o valor da relação abaixo, interpolando entre os valores desejados:

$\frac{W^2}{S_b}$	$\frac{\mathbf{c_{mob}} \cdot \mathbf{S} \cdot \mathbf{\bar{c}}}{\mathbf{i_w} \cdot \mathbf{S_b} \cdot \mathbf{I_b}}$
0,10	-0,076
0,15	-0,101

Tabela 18.14 – Valores para a interpolação.

Para
$$\frac{W^2}{S_b} = 0.138$$
 temos que $\frac{c_{\text{mob}} \cdot S \cdot \overline{c}}{i_w \cdot S_b \cdot I_b} = -0.095$

Dessa forma:

$$c_{mob} = -0,095 \cdot \frac{-0,07155 \cdot 16,94 \cdot 13,0}{25,0 \cdot 1,3419} = -0,04462$$

Coeficiente de momento Asa-Fuselagem:

 $C_{mwb} = C_{mow} + C_{mob}$

18.1.12 Determinação da Influência da Fuselagem ou Nacele no Ponto Neutro do Avião

A influencia da fuselagem na estabilidade pode ser representada pela variação do ponto neutro devido à sua presença.

O valor de $(\Delta h_o)_B$ pode ser obtido da figura 4.10. Para a fuselagem e cada uma das naceles obtém-se este valor que deve ser somado ao obtido para $(h_o)_w$ fornecendo h_{owb} .

As seguintes dimensões estão envolvidas na leitura da figura:

- $\stackrel{=}{c}$ = Corda média aerodinâmica L_n = Distância da linha de c/4 da asa ao nariz da aeronave L_b = Comprimento da fuselagem S = Área da asa
- w = máxima largura da aeronave

Calculando os parâmetros de entrada:

$$\frac{L_N}{L_B} = \frac{7,23}{13,0} = 0,556$$

 $\frac{c}{L_B} = \frac{1,86}{13,0} = 0,146$

Será necessário fazer várias interpolações a fim de obter o valor desejado.

$\frac{c}{L_B}$	$rac{L_N}{L_B}$	$\Delta h \cdot \left(\frac{S \cdot c}{w \cdot c_r^2}\right)$
0,2	0,4	0,575
0,25	0,4	0,450
0,3	0,4	0,375

Tabela 18.15 – Valores para a interpolação.

Tabela 18.16 – Valores para a interpolação.

$\frac{c}{L_B}$	$rac{L_N}{L_B}$	$\Delta h \cdot \left(\frac{S \cdot c}{w \cdot c_r^2}\right)$
0,2	0,5	0,700
0,25	0,5	0,550
0,3	0,5	0,465

Traçando gráficos que relacionam $\frac{c}{L_B} \in \Delta h \cdot \left(\frac{S \cdot \bar{c}}{w \cdot c_r^2}\right)$ para cada valor de $\frac{L_N}{L_B}$, tem-se:

figura 18.3. - Interpolação de c/Lb

Agora substituindo $\frac{c}{L_B} = 0,143$ em cada curva, obtém-se:

Tabela 18.17 – Valores para a interpolação.

$rac{c}{L_B}$	$rac{L_N}{L_B}$	У
0,146	0,4	0,957
0,146	0,5	0,799

Fazendo interpolação linear para $\frac{L_N}{L_B} = 0,556$, tem-se y = 1,046

Dessa forma:

$$\Delta h \cdot \left(\frac{S \cdot c}{w \cdot c_r^2}\right) = -1,046$$

 $\Delta h = -1,046 \cdot \left(\frac{1,53 \cdot 1,86^2}{25,0 \cdot 1,3419}\right)$

Logo:

$$\Delta h = -0,1650$$

Então a nova posição do centro aerodinâmico do conjunto será dada por:

 $h_{owb} = h_{0w} + \Delta h_{0b}$

 $h_{owb} = 0,2626 - 0,1650 = 0,097$

18.1.13 Determinação do Coeficiente de Sustentação $a_1 = \frac{\partial C_L}{\partial \alpha}$ da Empenagem Horizontal

O valor de a_1 pode ser obtido da mesma forma que o de a_w pois a empenagem horizontal pode ser tratada como uma asa. Para a aeronave em questão, o perfil da empenagem horizontal se trata de um NACA 0015.

α ₁ (rad)	CL
-0,0698	-0,4
0	0

Tabela 18.18 – Valores para a interpolação.

 $(a_1)_0 = 5,73 \text{ rad}^{-1}$

Cálculo do a_{1w}:

$$a_{1w} = \frac{\pi \cdot A}{1 + \sqrt{\frac{A^2}{4 \cdot k^2} \cdot \left(\beta^2 + tg^2 \cdot \Lambda_{c/2}\right) + 1}}$$

Onde:

$$A = 2,40$$

 $\beta = 0,981$

 $\Lambda_{c/2} = 5^{\circ}$

$$k = \frac{a_{1o}}{2\pi} = \frac{5,73}{2\pi} = 0,912$$

Assim:

 $a_{1w} = 2,93 \text{ rad}^{-1}$

Da figura 4.1, tira-se o parâmetro $(a_1)_{ot}$. Este valor será usado no cálculo de outros parâmetros. É necessário conhecer o valor da espessura relativa e do ângulo que o escoamento deixa o perfil no bordo de fuga (τ) .

t/c = 15%

Do software XFOIL, tira-se o ângulo:

 $\tau=19^{o}$

Interpolando os valores:

τ	$(a_1)_{ot}$
0°	7,0
20°	7,05
19°	7,0475

Tabela 18.19 – Valores para a interpolação.

Logo:

 $(a_1)_{ot} = 7,0475 \text{ rad}^{-1}$

Cálculo da correção devido à presença de folgas entre o profundor e o estabilizador horizontal. Será considerado:

Gap size: 0.001.c Posição do gap: 0.6.c

А	$\frac{(a_{o1})_g}{(a_1)_{ot}}$
∞	0.97
3	0.98
2,4	0.98

Tabela 18.20 – Valores para a interpolação.

Logo:

$$\frac{(a_{o1})_g}{(a_1)_{ot}} = 0,98$$

 $(a_{o1})_g = 7,0475 . 0,98 = 6,906$

O valor de a₁ pode ser calculado pela equação:

$$a_1 = a_{1w} \left[\frac{(a_{o1})_g}{(a_1)_{ot}} \cdot f \right]$$

Os parâmetros de entrada para a figura 4.11 são: o tipo de bordo de ataque e a relação entre a corda do profundor e a corda da empenagem horizontal (denominado *balance*).

Usando o formato Blunt, tem-se:

$$C_{\rm B} / C_{\rm E} = 0,40 = 40 \%$$

Implica que:

f = 1,11

Aplicando as correções:

 $a_1 = 2.93 \cdot (0.98 \cdot 1.11) = 3.19 \text{ rad}^{-1}$

18.1.14 Determinação da Variação da Sustentação da Empenagem Horizontal com a Deflexão do Profundor dC_L/dh (a₂)

Por meio da espessura relativa (t/c = 0,15), do alongamento da empenagem (A = 2,40), da relação cf/c = 0,40 e dos coeficientes determinados no item anterior, é possível determinar a partir de gráficos os coeficientes $(a_2)_0$, $(a_2)_{ot}$ e $(a_2)_m$. Consultando a figura 4.12a, obtém-se:

 $(a_2)_{ot} = 5,4$

Pela mesma figura, tem-se:

 $\frac{(a_1)_o}{(a_1)_{ot}} = \frac{5,73}{7,04} = 0,814$

Interpolando valores para cf/c = 0,40:

$(a_1)_o / (a_1)_{ot}$	$(a_2)_o / (a_2)_{ot}$
0,82	0,74
0.80	0.70
0.814	0,728

Tabela 18.21 – Valores para a interpolação.

 $\frac{(a_2)_o}{(a_2)_{ot}} = 0,728$

Logo:

 $(a_2)_0 = 0,728.5,4$

 $(a_2)_0 = 3,93 \text{ rad}^{-1}$

Considerando a condição de Cruzeiro o número de Mach calculado anteriormente é de:

$$M = 0,4$$

Assim, pela figura 4.12b:

 $A \cdot \sqrt{1 - M^2} = 2, 4 \cdot \sqrt{1 - 0, 4^2} = 2, 2$

Mantendo o valor de c_{f}/c , plota-se valores da figura 4.12b na tabela abaixo:

$A \cdot \sqrt{1 - M^2}$	$\frac{(a_2)_M \cdot (a_1)_o}{(a_2)_o \cdot (a_1)_M}$
2,0	1,13
2,5	1,11
2,2	1,12

Tabela 18.22 – Valores para a interpolação.

Logo:

$$\frac{(a_2)_M \cdot 5,73}{2,2 \cdot 3,19} = 1,12$$

 $(a_2)_M = a_2 = 1,37 \text{ rad}^{-1}$

18.1.15 Determinação da Variação da Sustentação da Empenagem Horizontal com o Ângulo de Deflexão do Compensador (η = 0) a₃:

Por meio da espessura relativa (t/c = 0,15), do alongamento da empenagem (A = 2,4), da relação cf/c = 0,12 e dos coeficientes determinados no item anterior, é possível determinar a partir de gráficos os coeficientes $(a_3)_0$, $(a_3)_{ot}$ e $(a_3)_m$. Consultando a figura 4.12a, obtém-se:

cf/c	(a ₃) _{ot}
0,1	2,55
0,2	3,75
0,12	2,79

Tabela 18.23 – Valores para a interpolação.

 $(a_3)_{ot} = 2,79$

A partir da segunda figura 4.12a, segue-se a relação:

$$\frac{(a_1)_o}{(a_1)_{ot}} = \frac{5,73}{7,04} = 0,814$$

$$\frac{c_f}{c} = 0,12$$

Interpolando valores para cf/c = 0,12:

$(a_1)_o / (a_1)_{ot}$	$(a_3)_0 / (a_3)_{ot}$
0,80	0,63
0.82	0.70
0.814	0,679

Tabela 18.24 – Valores para a interpolação.

$$\frac{(a_3)_o}{(a_3)_{ot}} = 0,679$$

Assim:

 $(a_3)_0 = 0,679 . 2,79 = 1,89 \text{ rad}^{-1}$

Considerando a condição de Cruzeiro o número de Mach calculado anteriormente é de:

M = 0,4

Assim, pela figura 4.12b:

$$A \cdot \sqrt{1 - M^2} = 2, 4 \cdot \sqrt{1 - 0, 4^2} = 2, 20$$

$A \cdot \sqrt{1 - M^2}$	a [*] ₃
2,0	1,185
2,5	1,165
2,20	1,177

Tabela 18.25 – Valores para a interpolação.

$$a_3^* = \frac{(a_3)_M \cdot (a_1)_o}{(a_3)_o \cdot (a_1)_M} = 1,177$$

Então:

 $\frac{(a_3)_M \cdot 5,73}{1,89 \cdot 3,19} = 1,177$

 $(a_3)_M = a_3 = 1,23 \text{ rad}^{-1}$

18.1.16 Determinação da Variação do Coeficiente de Momento de Articulação com o Ângulo de Ataque dC_H/dα (b₁)

Inicialmente deve-se determinar $(b_1)_0$ para o cálculo de b_1 . Em seguida será feita a correção de $(b_1)_0$ para o balanceamento do profundor. O terceiro passo consiste na determinação do b_1 para um alongamento finito, e o quarto e último passo, é a correção para o efeito de "*horn*".

18.1.16.1 Determinação de (b₁)_o

O valor de $(b_1)_0$ representa b_1 para escoamento bidimensional e sem balanceamento do controle. Pode-se determiná-lo por meio do gráfico 4.14a.

Sendo:

$$\frac{(a_1)_o}{(a_1)_{ot}} = \frac{5,73}{7,04} = 0,814$$

cf/c = 0,40
t/c = 0,15

Acha-se:

 $(b_1)_{ot} = -0,65$

Interpolando valores:

$\frac{c_f}{c}$	$\frac{(a_1)_o}{(a_1)_{ot}}$	$\frac{(b_1)_o}{(b_1)_{ot}}$
0,4	0,82	0,6
0,4	0,80	0,55
0,4	0,814	0,585

Tabela 18.26 – Valores para a interpolação.

Para $\frac{(a_1)_o}{(a_1)_{ot}}$ igual a 0,814, encontra-se um valor de $\frac{(b_1)_o}{(b_1)_{ot}}$ igual a 0,585. Dessa forma

pode-se calcular (b₁)_o multiplicando este valor por -0,65. Assim:

 $(b_1)_0 = -0,65 (0,585)$

 $(b_1)_0 = -0,38$

18.1.16.2 Correção de (b₁)_o para o Balanceamento do Profundor

Através do gráfico 4.14b é possível efetuar a correção. Inicialmente, calcula-se a razão de balanceamento através da equação:

Razão de balanceamento = $\sqrt{\left(\frac{c_b}{c_r}\right)^2 - \left(\frac{t/2}{c_r}\right)^2}$

Admitindo que $c_b \cong t/2$,

Razão de balanceamento =
$$\sqrt{\left(\frac{t/2}{c_r}\right)^2 - \left(\frac{t/2}{c_r}\right)^2} = 0$$

Por isso não será necessário fazer nenhuma correção.

18.1.16.3 Determinação de b₁ para Alongamento Finito

A correção para o alongamento finito é feita através da equação:

$$b_1 = (b_1)_o \cdot (1 - F_1) + F_2 \cdot F_3 \cdot (a_1)_o$$

onde: F_1 – fator obtido da figura 4.14c F_2 – fator obtido da figura 4.14c F_3 – fator obtido da figura 4.14c

Sendo,

$$A \cdot \left(\frac{5,73}{(a_1)_o}\right) = 2, 4 \cdot \left(\frac{5,73}{5,73}\right) = 2,4$$

$A \cdot \left(\frac{5,73}{(a_1)_o}\right)$	F_1	F ₂
2	0,5	0,018
3	0,4	0,014
2,4	0,46	0,0164

Tabela 18.27 – Valores para a interpolação.

Dessa forma:

F1 = 0,46

F2 = 0,0164

Para o cálculo de F3:

 $c_{\rm f} / c = 0,40$

Determinação da corda média aerodinâmica da empenagem:

$$\stackrel{=}{c} = \frac{2}{3} \cdot c_r \cdot \left(\frac{1 + \lambda + \lambda^2}{\lambda + 1}\right)$$

onde: $\lambda = 0.84$ $c_r = 1.2 \text{ m}$

Então:

$$\bar{c} = 1,10 \text{ m}$$

Na posição da corda na raiz, t/2 = 97,02mm

 $c_b \cong t/2 = 97,02mm$

$$\overline{c_f} = 0,40.$$
 $\overline{c} = 0,40.$ 1,2 = 0,48m

Assim:

$$\frac{c_b}{c_f} = \frac{0,09702}{0,48} = 0,20$$

Balance = 20%

Assim, pelo gráfico 4.32:

$$F3 = 1,15$$

Com todos os parâmetros definidos, pode-se calcular b₁:

 $b_1 = -0.38 \cdot (1 - 0.46) + 0.0164 \cdot 1.15 \cdot 5.73 = -0.097 \, rad^{-1}$

18.1.16.4 Correção para efeito de Horn

O avião em projeto não possui horn.

18.1.17 Determinação da Variação do Coeficiente de Momento de Articulação com o Ângulo de Deflexão do Profundor $b_2 = dC_H/d\eta$

Inicialmente deve-se determinar $(b_2)_0$ para o cálculo de b_1 . Em seguida será feita a correção de $(b_2)_0$ para o balanceamento do profundor. O terceiro passo consiste na determinação do b_1 para um alongamento finito, e o quarto e último passo, é a correção para o efeito de "*horn*".

18.1.17.1 Determinação de $(b_2)_0$

O valor de $(b_2)_0$ representa b_2 para escoamento bidimensional e sem balanceamento do controle. Pode-se determiná-lo através do gráfico 4.15.

Sendo:

$$\frac{(a_2)_o}{(a_2)_{ot}} = 0,728$$

$$\frac{c_f}{c} = 0,40$$

$$\frac{t}{c} = 0,15$$

Do gráfico 4.15, tem-se:

 $(b2)_{ot} = -0,915$

Pelo mesmo gráfico, acha-se o valor de (b₂)_o.

$\frac{c_f}{c}$	$\frac{(a_2)_o}{(a_2)_{ot}}$	$\frac{(b_2)_o}{(b_2)_{ot}}$
04	0,700	0,660
0,4	0,750	0,735
0,4	0,728	0,805

Tabela 18.28 – Valores para a interpolação.

Para $\frac{(a_2)_o}{(a_2)_{ot}}$ igual a 0,728, encontra-se um valor de $\frac{(b_2)_o}{(b_2)_{ot}}$ igual a 0,702. Dessa forma

pode-se calcular $(b_2)_0$ multiplicando este valor por - 0,915. Assim:

 $(b_2)_0 = -0,915 (0,702)$

 $(b_2)_0 = -0,642$

18.1.17.2 Correção de (b₂)_o para o Balanceamento do Profundor

Através do gráfico 4.14b é possível efetuar a correção. Inicialmente, calcula-se a razão de balanceamento através da equação:

Razão de balanceamento = $\sqrt{\left(\frac{c_b}{c_r}\right)^2 - \left(\frac{t/2}{c_r}\right)^2}$

Admitindo que $c_b \cong t/2$,

Razão de balanceamento =
$$\sqrt{\left(\frac{t/2}{c_r}\right)^2 - \left(\frac{t/2}{c_r}\right)^2} = 0$$

Por isso não será necessário fazer nenhuma correção.

18.1.17.3 Determinação de b₂ para Alongamento Finito

A correção para o alongamento finito é feita através da equação:

$$\mathbf{b}_2 = (\mathbf{b}_2)_{\mathbf{o}} - \left(\frac{\alpha_1}{\delta}\right) \cdot (\mathbf{b}_1)_{\mathbf{o}} + \Delta(\mathbf{b}_2) \cdot \mathbf{F}_3 \cdot (\mathbf{a}_2)_{\mathbf{o}}$$

onde: $(b_2)_0$ – valor de b_2 bidimensional e corrigido para o

balanceamento

$$(\alpha_1/\delta)$$
 – valor obtido graficamente (figura 4.14c)
(b₁)_o – valor de b₁ bidimensional e corrigido para o

balanceamento

 $\Delta(b_2)$ – valor obtido graficamente (figura 4.14c) F₃ – valor obtido graficamente (4.14c) (a₂)_o – valor de a₂ bidimensional e corrigido para o

balanceamento

Mas:

A = 2,4

$$A \cdot \left(\frac{5,73}{(a_1)_o}\right) = 2,4 \cdot \left(\frac{5,73}{5,73}\right) = 2,4$$

 $(b_2)_0 = -0,642 \text{ rad}^{-1}$

 $(a_1)_0 = 5,73 \text{ rad}^{-1}$

 $c_{\rm f} / c = 0,40$

 $(a_2)_0 = 3,93 \text{ rad}^{-1}$

- $a_2 = 1,37 \text{ rad}^{-1}$
- $(b_1)_0 = -0.097 \text{ rad}^{-1}$
- $F_3 = 1,15$

Da figura 4.14c, têm-se (através de interpolação linear para $c_f / c = 0,40$):

$A \cdot \left(\frac{5,73}{(a_1)_o}\right)$	$\left(\frac{\alpha_1}{\delta}\right) \cdot \frac{(a_2)}{(a_2)_o}$
2	0,44
3	0,35
2,4	0,404

Tabela 18.29 – Valores para a interpolação.

$$\left(\frac{\alpha_1}{\delta}\right) \cdot \frac{(a_2)}{(a_2)_o} = 0,404$$

$A \cdot \left(\frac{5,73}{(a_1)_o}\right)$	$\Delta(b_2)$
2	0,035
3	0,023
2,4	0,0302

Tabela 18.30 - Valores para a interpolação.

 $\Delta(b_2) = 0.0302$

Assim:

$$\frac{\alpha_1}{\delta} = 0,404 \cdot \frac{3,93}{1,37} = 1,159$$

Dessa forma:

 $b_2 = -0.642 - 1.159 \cdot (-0.097) + 0.0302 \cdot (1.15) \cdot 3.93 = -0.393 rad^{-1}$

18.1.17.4 Correção para efeito de Horn

O avião em projeto não possui horn.

18.1.18 Determinação da Variação do Coeficiente de Momento de Articulação com o Ângulo de Deflexão do Compensador b3 = dCH/dβ

Através da figura 4.16 pode-se obter diretamente o valor de b_3 , onde todos os valores são mostrados esquematicamente e onde s é o valor do ângulo do bordo de fuga do profundor na região do compensador.

Para $\sigma = 8^\circ$, temos F = 1,23

São necessários os seguintes parâmetros (figura 4.16):

$$s_{T} = 0,65m$$

 $s_{F} = 2,4m$
 $C' = 1,25m$
 $C_{T} = 0,097m$
 $C_{F} = 0,45m$
 $\frac{1}{c} = 1,106m$
 $S_{F}' = 0,3645m^{2}$
 $S' = 0,081m^{2}$
 $\frac{C_{T}}{C'} = 0,0776$
 $\frac{s_{F}}{s_{T}} = 3,69$

$$\lambda = \frac{S'}{S_F'} = 0,22$$

Tabela 18.31 – Valores para a interpolação.

$\frac{C_T}{C}$	у
0,07	0,61
0,08	0,66
0,0776	0,648

Do gráfico 4.16, tem-se:

$$-\left(\frac{b_3}{F}\right) \cdot \left(\frac{s_f}{s_t}\right) \cdot \left(\frac{C_f}{C_f}\right)^2 = 0,648$$

$$-\left(\frac{b_3}{1,23}\right) \cdot 3,69 \cdot \left(\frac{0,45}{0,45}\right)^2 = 0,855$$

$$b_3 = -0,215 \text{ rad}^{-1}$$

18.1.19 Cálculo dos Pontos Neutros e dos Pontos de Manobra

18.1.19.1 Cálculo do Ponto Neutro Manche Fixo em Porcentagem de Corda – h_n:

A hipótese 'Manche Fixo' considera uma variação nula na deflexão do profundor ($\tilde{\eta} = 0$). Ponto Neutro Manche Fixo é definido como a posição do C.G. para a qual a margem estática longitudinal Manche Fixo é zero.

O Ponto Neutro Manche Fixo é calculado por:

$$\mathbf{h}_{n} = \mathbf{h}_{owb} + \overline{\mathbf{V}} \cdot \mathbf{a}_{1} \frac{\varepsilon_{\alpha}}{\mathbf{a}_{wb}}$$

Onde:

 h_{owb} = Posição do centro aerodinâmico do conjunto asa-fuselagem

 $S_t =$ Área da empenagem horizontal

 I_t = Distância entre os CA's da asa e da empenagem

S = Área alar

 $\stackrel{=}{c}$ = corda média aerodinâmica da asa

- \overline{V} = Volume de cauda da aeronave
- a_1 = Coeficiente dC_L/d α da empenagem horizontal

 ε_{α} = Efeito de *downwash*

 a_{wb} = Coeficiente dC_L/d α do conjunto asa-fuselagem

Multiplica-se cada coeficiente dependente da empenagem horizontal por cos(30) para fazer a conversão da empenagem em V. Logo:

$$h_n = 0,094 + 0,53 \cdot 3,19 \cdot \cos(30) \cdot \frac{0,818}{5,04} = 0,368$$

 $h_n = 36,8\%$

18.1.19.2 Cálculo do Ponto Neutro Manche Livre em Porcentagem de Corda – h_n'

A hipótese Manche Livre considera uma variação nula no momento de articulação. Ponto Neutro Manche Livre é definido como a posição do C.G. para a qual a margem estática longitudinal Manche Livre é zero.

O Ponto Neutro Manche Livre é calculado por:

$$\mathbf{h}'_{n} = \mathbf{h}_{owb} + \overline{\mathbf{V}} \cdot \overline{\mathbf{a}_{1}} \frac{\varepsilon_{\alpha}}{\mathbf{a}_{wb}}$$

Onde:

howb = Posição do centro aerodinâmico do conjunto asa-fuselagem

- $S_t = Area da empenagem horizontal$
- I_t = Distância entre os CA's da asa e da empenagem

S = Área alar

- \ddot{c} = corda média aerodinâmica da asa
- \overline{V} = Volume de cauda da aeronave
- $\overline{a_1}$ Coeficiente parametrizado a partir de a_1 , a_2 , b_1 , b_2
- a_1 = Coeficiente dC_L/d α da empenagem horizontal
- a_2 = Coeficiente dC_L/d η da empenagem horizontal
- b_1 = Coeficiente $dC_H/d\alpha$ da empenagem horizontal
- b_2 = Coeficiente dC_H/dη da empenagem horizontal
- ε_{α} = Efeito de *downwash*
- a_{wb} = Coeficiente dC_L/d α do conjunto asa-fuselagem

Multiplica-se cada coeficiente dependente da empenagem horizontal por cos(30) para fazer a conversão da empenagem em V. Logo:

$$h_n = 0,094 + 0,53 \cdot 2,85 \cdot \cos(30) \cdot \frac{0,818}{5,04} = 0,339$$

 $h_n' = 33,9\%$

18.1.19.3 Cálculo do Ponto de Manobra Manche Fixo à Altitude de Cruzeiro com Peso Máximo de Decolagem em Porcentagem de Corda – h_m:

O Ponto de Manobra Manche Fixo é a posição do C.G. para a qual não é necessária nenhuma alteração na deflexão do profundor para a realização de uma manobra.

O cálculo do Ponto de Manobra Manche Fixo é feito pela seguinte expressão:

$$h_m = h_{owb} + \overline{V} \cdot a_1 \cdot \left(\frac{\varepsilon_{\alpha}}{a_{wb}} + \frac{1}{2\mu}\right)$$

Onde:

howb = Posição do centro aerodinâmico do conjunto asa-fuselagem

 $S_t =$ Área da empenagem horizontal

 I_t = Distância entre os CA's da asa e da empenagem

S =Área alar

 \vec{c} = corda média aerodinâmica da asa

- \overline{V} = Volume de cauda da aeronave
- a_1 = Coefficiente dC_L/d α da empenagem horizontal
- ε_{α} = Efeito de *downwash*
- a_{wb} = Coeficiente dC_L/d α do conjunto asa-fuselagem
- μ = parâmetro de densidade longitudinal

$$\mu = \frac{W}{g \cdot \rho \cdot I'_{t} \cdot S}$$

 $\mu = 6,16$

Multiplica-se cada coeficiente dependente da empenagem horizontal por cos(30) para fazer a conversão da empenagem em V. Logo:

$$h_m = 0,094 + 0,53 \cdot 3,19 \cdot \cos(30) \cdot \left(\frac{0,818}{5,04} + \frac{1}{2 \cdot 6,16}\right) = 0,505$$

 $h_m = 50,5\%$

18.1.19.4 Cálculo do Ponto de Manobra Manche Livre à Altitude de Cruzeiro com Peso Máximo de Decolagem em Porcentagem de Corda – h_m':

O Ponto de Manobra Manche Livre é a posição do C.G. para a qual não é necessária nenhuma alteração na força no manche para a realização de uma manobra.

O cálculo do Ponto de Manobra Manche Fixo é feito pela seguinte expressão:

$$h_m' = h_{owb} + \overline{V} \cdot \overline{a_1} \cdot \left(\frac{\varepsilon_{\alpha}}{a_{wb}} + \frac{1}{2\mu}\right)$$

Onde:

h_{owb} = Posição do centro aerodinâmico do conjunto asa-fuselagem

- $S_t = Area da empenagem horizontal$
- I_t = Distância entre os CA's da asa e da empenagem

S = Área alar

 \vec{c} = corda média aerodinâmica da asa

 \overline{V} = Volume de cauda da aeronave

- $\overline{a_1}$ Coeficiente parametrizado a partir de a₁, a₂, b₁, b₂
- $a_1 = Coeficiente dC_L/d\alpha da empenagem horizontal$
- a_2 = Coeficiente dC_L/dη da empenagem horizontal
- b_1 = Coeficiente $dC_H/d\alpha$ da empenagem horizontal
- b_2 = Coeficiente dC_H/dη da empenagem horizontal
- ε_{α} = Efeito de *downwash*
- a_{wb} = Coeficiente dC_L/d α do conjunto asa-fuselagem

 μ = parâmetro de densidade longitudinal

Multiplica-se cada coeficiente dependente da empenagem horizontal por cos(30) para fazer a conversão da empenagem em V. Logo:

$$h_m = 0,094 + 0,53 \cdot 2,85 \cdot \cos(30) \cdot \left(\frac{0,818}{5,04} + \frac{1}{2 \cdot 6,16}\right) = 0,462$$

 $h_m' = 46,2\%$

18.1.20 Cálculo Das Curvas $\overline{\eta}$ X Cl (Deflexão Do Profundor Por Coeficiente De Sustentação)

Sabendo que $\stackrel{-}{\eta}$ é uma função linear de $\overline{C_L}$, a expressão é dada por:

$$\overline{\eta} = A_1 \cdot \overline{C_L} + A_2$$

Os valores de A1 e A2 são obtidos por:

$$\mathbf{A}_{1} = \frac{1}{\overline{\mathbf{V}} \cdot \mathbf{a}_{2}} \cdot \left[(\mathbf{h} - \mathbf{h}_{\text{owb}}) - \frac{\overline{\mathbf{V}} \cdot \mathbf{a}_{1}}{\mathbf{a}_{\text{wb}}} \cdot \mathbf{\varepsilon}_{\alpha} \right]$$

$$\mathbf{A}_{2} = \frac{1}{\overline{\mathbf{V}} \cdot \mathbf{a}_{2}} \cdot \left(\mathbf{C}_{\mathrm{mwb}} - \overline{\mathbf{V}} \cdot \mathbf{a}_{1} \cdot \mathbf{i}_{\mathrm{t}} - \overline{\mathbf{V}} \cdot \mathbf{a}_{3} \cdot \delta \right)$$

Onde:

 C_{mowb} = Coeficiente de momento do conjunto asa-fuselagem

- \overline{V} = Volume de cauda da aeronave
- a_1 = Coeficiente dC_L/d α da empenagem horizontal
- a_2 = Coeficiente dC_L/dη da empenagem horizontal
- ε_{α} = Efeito de *downwash*
- a_{wb} = Coeficiente dC_L/d α do conjunto asa-fuselagem
- h = Posição do Centro de Gravidade da Aeronave
- howb = Posição do centro aerodinâmico do conjunto asa-fuselagem
- $i_t = \hat{A}$ ngulo de incidência da empenagem horizontal
- a_3 = Coeficiente dC_L/d δ da empenagem horizontal
- δ = Deflexão do compensador

É necessário determinar os limites do gráfico, ou seja, os coeficientes de sustentação limites experimentados durante o vôo para traçar as curvas de $\overline{\eta}$ por $\overline{C_L}$. As velocidades típicas de vôo são:

 $V_{estol} = 37,9 \text{ m/s}$

 $V_{max cruzeiro} = 125 m/s$

A partir destas velocidades é possível calcular os C_L's limites através da equação:

$$\bar{C_L} = \frac{2 \cdot W}{\rho \cdot S \cdot V^2}$$

onde:

W = peso da aeronave

S = área alar

 ρ = densidade do ar

V = velocidade da aeronave

Considerando-se os carregamentos da aeronave, calcula-se os limites do coeficiente de sustentação (considerando-se as velocidade de estol, cruzeiro e máxima) para determinarmos a deflexão do profundor.

Plotando os resultados em um gráfico, tem-se:

Figura 18.4 Cl x η

18.1.21 Cálculo das Curvas $\overline{P_e}$ x V (Força no Manche por Velocidade) para vôo Equilibrado.

 \overline{Pe} é uma função quadrática de V, e sua equação é expressa como se segue.

$$Pe = B_1 + B_2 \cdot V^2$$

Os valores de B₁ e B₂ são obtidos por:

$$B_1 = m_e \cdot S_{\eta} \cdot \overset{=}{c}_{\eta} \cdot \left(\frac{W}{S}\right) \cdot \frac{b_2}{\overline{V} \cdot a_2} \cdot \left[(h - h_{owb}) - \frac{\overline{V} \cdot \overline{a_1}}{a_{wb}} \cdot \varepsilon_{\alpha}\right]$$

$$B_2 = m_e \cdot \rho \cdot S_\eta \cdot \overline{c} \cdot \frac{b_2}{\overline{V} \cdot a_2} \cdot \left(C_{mwb} - \overline{V} \cdot \overline{a_1} \cdot i_t - \overline{V} \cdot \overline{a_3} \cdot \delta \right)$$

Onde:

m_e = Razão de engrasamento

C_{mowb} = Coeficiente de momento do conjunto asa-fuselagem

- S_{η} = Área do Profundor
- \overline{V} = Volume de cauda da aeronave
- ε_{α} = Efeito de *downwash*
- a_{wb} = Coeficiente dC_L/ d α do conjunto asa-fuselagem
- h = Posição do Centro de Gravidade da Aeronave

howb = Posição do centro aerodinâmico do conjunto asa-fuselagem

 $i_t = \hat{A}$ ngulo de incidência da empenagem horizontal

 δ = Deflexão do compensador

 $c_{\eta} =$ corda média aerodinâmica do profundor

c - corda média aerodinâmica da asa

 $\overline{a_1}$ = Coeficiente parametrizado a partir de a₁, a₂, b₁, b₂

 $a_1 = Coeficiente dC_L/d\alpha da empenagem horizontal$

 a_2 =Coeficiente dC_L/dη da empenagem horizontal

- a_3 = Coeficiente dC_L/d δ da empenagem horizontal
- $b_1 = Coeficiente dC_H/d\alpha da empenagem horizontal$
- b_2 = Coeficiente dC_H/ dη da empenagem horizontal

 ρ = densidade do ar

As velocidades típicas de vôo são:

 $V_{estol} = 37,9 \text{m/s}$

 $V_{max cruzeiro} = 125 m/s$

Plotando os resultados no gráfico abaixo:

Figura 18.5 - Gráfico de Velocidade X peso

18.1.22 Cálculo Da Deflexão Do Manche Normalizada Pelo Acréscimo De Fator De Carga (N-1) – Q1

A deflexão do manche pode ser normalizada pelo acréscimo do fator de carga através da equação:

$$Q_1 = \frac{(h_m - h)}{\overline{V} \cdot a_2 \cdot m_e} \cdot \overline{C_L}$$

Onde:

- m_e = Razão de engrasamento
- a_2 = Coeficiente dC_L/d η da empenagem horizontal
- h_m = Ponto de manobra manche fixo
- \overline{V} = Volume de cauda da aeronave
- h = Posição do Centro de Gravidade da Aeronave

Logo:

$$Q_1 = \frac{(h_m - h)}{\overline{V} \cdot a_2 \cdot m_e} \cdot \overline{C_L}$$
$$Q_1 = \frac{(h_m - h)}{0,53 \cdot 1,37 \cdot \cos(30) \cdot 2,5} \cdot \overline{C_L}$$

Mas $h_m = 0,505$.

Plotando os resultados no gráfico abaixo:

Figura 18.6 – Gráfico de C_L X força no Manche Normalizada

18.1.23 Cálculo Da Força No Manche Normalizada Por "G" – Q2

A força no manche pode ser normalizada pela aceleração da gravidade através da equação:

$$Q_2 = -m_e \cdot S_{\eta} \cdot \stackrel{=}{c}_{\eta} \cdot \left(\frac{W}{S}\right) \cdot \frac{b_2}{\overline{V} \cdot a_2} \cdot (h_m' - h)$$

Onde:

m_e = Razão de engrasamento

 $S_h =$ Área do Profundor

- $c_{\eta} = corda$ média aerodinâmica do profundor
- a_2 = Coeficiente dC_L/dη da empenagem horizontal
- b_2 = Coeficiente dC_H/dη da empenagem horizontal
- \overline{V} = Volume de cauda da aeronave
- S = Área da asa
- h_m ' = Ponto de manobra manche fixo

Para o peso máximo de decolagem e $h_m' = 0319$

Plotando os resultados no gráfico abaixo:

Figura 18.7 – Gráfico da Velocidade X Força no Manche Normalizada

18.1.24 Análise do Passeio Estimado do Centro de Gravidade

Para análise da posição do C.G., foram considerados os pontos neutros e os pontos de manobra:

Ponto neutro manche fixo: hn = 36,8%

Ponto neutro manche livre: hn'=33,9%

Ponto de manobra manche fixo: hm = 50,5%

Ponto de manobra manche livre : hm' = 46,2%

As margens estáticas (manche fixo e manche livre), assim como as margens de manobra manche fixo e manche livre para o limite mais traseiro do cg foram calculadas abaixo:

Margem Estática manche fixo:

$$Kn = hn - h = 0,368 - 0,318 = 0,05$$

 Margem Estática manche livre:
 $Kn'=hn'-h=0,339 - 0,318 = 0,021$

 Margem de manobra manche fixo:
 $Hm = hm - h = 0,505 - 0,318 = 0,187$

 Margem de manobra manche livre:
 $Hm' = hm' - h = 0,462 - 0,318 = 0,144$

Dessa forma, as margens estáticas e de manobra são positivas para a situação mais extrema.

18.1.25 Curva De $\overline{Pe} + (\Delta \overline{Pe})_{\min}$ E $\overline{Pe} + (\Delta \overline{Pe})_{\max}$ Em Função De $\overline{C_L}$ Para As Posição mais Traseira Prevista Para o Cg.

O acréscimo na força do manche para manobra pode ser expresso pela fórmula:

$$\Delta \bar{P}e = -me \cdot S\eta \cdot \bar{C}\eta \cdot \left(\frac{w}{S}\right) \cdot \frac{b_2}{\bar{V} \cdot a_2} \cdot (h_m' - h) \cdot (n - 1) \cdot \bar{C}_L$$

CL é obtido pela equação de equilíbrio:

$$\bar{C_L} = \frac{2 \cdot W}{\rho \cdot V^2 \cdot S}$$

Onde:

n = fator de carga

 \overline{V} = Volume de cauda da aeronave

- h = Posição do Centro de Gravidade da Aeronave
- a_2 = Coeficiente dC_L/dη da empenagem horizontal
- b_2 = Coefficiente dC_H/ dη da empenagem horizontal
- h_m' = Ponto de Manobra Manche Livre

Foram considerados alguns fatores de carga positivos para a situação de c.g. mais traseiro possível.

Traçando o gráfico:

Figura 18.9 – Gráfico de Velocidade X Força mais variação da Força

18.1.26 Conclusão

Realizados os cálculos dos coeficientes necessários para a avaliação da estabilidade do avião em projeto, e determinadas as margens estáticas e de manobra, conclui-se que a aeronave em questão apresenta estabilidade estática longitudinal. Para todos os pontos dentro do passeio de c.g. estimado, as margens são positivas. A observação dos pontos leva a conclusão de que o passeio está limitado pelo ponto neutro manche livre.

De posse dos coeficientes e das dimensões características do avião, foram traçadas curvas que relacionassem a deflexão do profundor com o coeficiente de sustentação C_L . O aspecto destas curvas ficou bem coerente com o esperado. A inclinação das retas é negativa. As deflexões ficaram dentro dos limites de -30° e 30°.. Além do mais, as curvas cruzam o eixo das coordenadas, indicando que existe um ponto onde a deflexão é zero para uma determinada velocidade e um carregamento. Isso elimina a necessidade do piloto de defletir o profundor em todas as condições de vôo. Esta tendência pode ser atribuída pela presença de uma incidência negativa da empenagem horizontal. Outra observação pertinente leva a concluir que quanto mais próximo o c.g. do avião do bordo de ataque, maior é a necessidade de defletir o profundor para ângulos negativos. Este comportamento se inverte para ângulos positivos.

De forma análoga, curvas para a força no manche para cada velocidade foram traçadas. Desta vez observa-se que os limites requeridos não foram atendidos. A força não ficou dentro da faixa de -5kgf e +5kgf. Ela variou de +30kgf a -95kgf, devido a isso será incorporado um sistema servo-motor para atuar no profundor. Porém, assim como no caso da deflexão do profundor, existe uma velocidade tal que a força é zero. O comportamento das curvas está de acordo com o esperado. Para velocidades baixas é necessário que o piloto cabre o avião (força positiva), e em casos de baixa velocidade, o piloto devará pica-lo (força negativa).

O gráfico para deflexão no manche normalizada também esteve coerente. À medida que o c.g. se afasta do bordo de ataque, tem-se uma sensibilidade maior dos manches, permitindo que deflexões menores imponham fatores de carga altos. E para um mesmo carregamento da aeronave, aumentando-se o C_L , aumenta-se a deflexão linearmente. Já para as curvas de força no manche normalizada, observa-se que a força não varia com a

velocidade e para valores de c.g.'s mais próximos do bordo de ataque é necessária uma força maior. Dessa forma, em condições normais de vôo, a aeronave apresenta comandos equilibrados e uma operação segura.

18.2 Estabilidade Direcional Estática

18.2.1 Introdução

Neste trabalho realiza-se um estudo geral sobre os problemas referentes ao equilíbrio e estabilidade direcional do avião. Assim como no caso da estabilidade estática longitudinal onde foram analisadas as equações de sustentação, arrasto e momento; analisaremos as equações de momento de guinada do avião. Em geral as equações de momento são as mais importantes no estudo de estabilidade. Sabe-se que a orientação do avião com relação ao sistema aerodinâmico é dada por apenas dois ângulos: α (ângulo de ataque) e β (ângulo de derrapagem). Este último define a estabilidade direcional do avião (ou estabilidade para rotação em torno do eixo-z).

As características a serem determinadas são as margens de estabilidade direcional, deflexão do leme em função das velocidades de avanço e glissagem do avião. Alem dessas, serão encontradas também os valores de força nos pedais para vôo glissado e velocidade do vento para glissagem máxima.

18.2.2 Cálculo das características e derivadas aerodinâmicas

18.2.2.1 Principais Parâmetros da Aeronave

Inicialmente será apresentando os principais parâmetros da aeronave AETHRON na seguinte tabela:

Parâmetro	Símbolo	Valor	Unidade
Envergadura	b	16,0	m
Comprimento	1	13,00	m
Área da Asa	S_w	25,00	m ²
Carga Alar	W/S	30,6405	lb/ft²
Perfil da Empenagem	NACA 0015		
Corda Raiz (EV)	Cr	1,2	m
Corda Ponta (EV)	C _p	1,008	m
Alongamento (EV)	А	2,40	m
Enflexamento (EV)	L _{c/2}	5	o
Envergadura da Empenagem Vertical	b _e	5,12	m
Área da Empenagem Vertical	\mathbf{S}_{EV}	6,2	m ²
Peso Maximo de Decolagem	W _{to}	3740	kg
Velocidade de Cruzeiro	Vc	125,00	m/s
Velocidade de Estol	Vs	56,4	m/s

Tabela 18.32 – Parâmetros da aeronave

O passeio do CG da aeronave AETHRON encontrado nos cálculos preliminares de projeto encontra-se entre 15% e 32% da corda média aerodinâmica.

18.2.2.2 Cálculo da variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque da mesma

A variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque da mesma é afetada por duas características básica: os efeitos tridimensionais da empenagem e o efeito da fresta entre a deriva e o leme.

Quanto aos efeitos tridimensionais da empenagem, trata-se a mesma como uma asa e procede-se os cálculos da forma comum.

A equação 1 determina este coeficiente de variação para a empenagem vertical.

$$a_{1}^{*} = \frac{2 \cdot \pi \cdot A_{EV}}{2 + \sqrt{\frac{A_{EV}^{2}}{k^{2}} \cdot (\beta^{2} + tg^{2}\Lambda_{c/2}) + 4}}$$

Equação 1

O parâmetro "k", segundo Pullin (1976) é definido como;

$$\mathbf{k} = \frac{\left(\mathbf{a}_{1}\right)_{\mathrm{o}}}{2 \cdot \pi}$$

Como no presente projeto adotar-se-á o perfil NACA 0015 em toda a empenagem vertical, ter-se-á para o perfil bidimensional:

Tabela 18.33 – Dados do perfil NACA 0015		
α (rad)	CL	
-0,0698	-0,4	
0	0	
$a_o = \frac{\partial C_L}{\partial \alpha}$	$=5,73 \text{ rad}^{-1}$	

NACA 0015
$$(a_1)_a = 5,73 \text{ rad}^{-1}$$

Desta forma, o parâmetro "k" para a empenagem vertical do presente projeto será igual a:

$$k = \frac{a_0}{2\pi} = \frac{5,73}{2\pi} = 0,912$$

O parâmetro "β" que é definido de acordo com a equação 3:

$$\beta^2 = \sqrt{1 - M^2} \qquad \text{eq(3)}$$

$$\beta = \sqrt{1 - 0, 40^2} = 0,9165$$

\beta = 0,9165

O valor de a_1^* pode então ser encontrado sabendo que o enflechamento na distância de meia corda (L_{c/2}) é 5°:

$$a_{1}^{*} = \frac{2 \cdot \pi \cdot 2, 4}{2 + \sqrt{\frac{6, 2^{2}}{0, 912^{2}} \cdot (0, 9165^{2} + tg^{2}0, 0872) + 4}}$$
$$a_{1}^{*} = 1,76 \text{ rad}^{-1}$$

Para efetuar a correção deste valor devido a fresta existente entre a deriva e o leme, utilizar-se-á os gráfico 4.11 a e b (Pullin et al., 1976).

Nestes gráficos deve-se entrar com o valor da posição da fenda em relação à corda da empenagem vertical, bem como o valor da espessura desta fenda também em relação a corda da empenagem.

$$GAP = 0,001c$$
 Posição do $GAP = 0,6c$

А	$\frac{a_1 *}{a_1}$
∞	0.97
3	0.98
2,4	0.98

Tabela 18.34 – Interpolação para Cálculo de a1

Dessa forma, os valores da variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque da mesma corrigida pelo efeito da fresta entre a deriva e o leme será:

$$a_1 = 1,796 \text{ rad}^{-1}$$

18.2.2.3 Cálculo da variação do coeficiente de sustentação da empenagem vertical com a variação da deflexão do leme

Para o calculo da variação do coeficiente de sustentação da empenagem com a variação da deflexão do leme, utilizar-se-á o procedimento proposto por Pullin (1976).

Do gráfico 4.12^a UTSCH[1], sendo a corda do leme igual a 40 % da corda da empenagem e a espessura relativa do perfil da empenagem igual a 15%, tem-se o valor desta variação para o perfil bidimensional igual a:

$$(a_2)_{ot} = 5,4 \, \mathrm{rad}^{-1}$$

Da polar de sustentação do perfil NACA 0015 tem-se:

$$a_o = \frac{\partial C_L}{\partial \alpha} = 5,73 \text{ rad}^{-1}$$

Sendo o número de Reynolds da empenagem vertical para a velocidade de cruzeiro:

$$Re_{EH} = 6,9 \times 10^6$$

Sendo a tangente do semi ângulo do bordo de fuga da empenagem vertical a

tg
$$\frac{8^{\circ}}{2} = 0,0699$$

temos para o numero de Reynolds de acordo com o gráfico 4.12a UTSCH[1]:

$$\frac{(a_1)_0}{(a_1)_{ot}} = 0,814$$

Do gráfico 4.12a UTSCH[1], tem-se:

Tabela 18.35 – Interpolação para cálculo de (a₂)₀

 $\frac{(a_{1})_{0}}{(a_{1})_{ot}} = 0,82 \qquad \qquad \frac{(a_{2})_{0}}{(a_{2})_{ot}} = 0,74$ $\frac{(a_{1})_{0}}{(a_{1})_{ot}} = 0,80 \qquad \qquad \frac{(a_{2})_{0}}{(a_{2})_{ot}} = 0,70$ $\frac{(a_{1})_{0}}{(a_{1})_{ot}} = 0,814 \qquad \qquad \frac{(a_{2})_{0}}{(a_{2})_{ot}} = 0,728$

$$\frac{(a_2)_0}{(a_2)_{ot}} = 0,728$$

Desta forma,

$$(a_2)_0 = 3,93 \text{ rad}^{-1}$$

Do gráfico 4.12b UTSCH[1], sendo o valor médio de A $\sqrt{1-M^2}$ deste projeto igual a:

Tem-se:

 $A\sqrt{1-M^2} = 2,20$

$$\frac{(a_2)_M}{(a_2)_o} / (a_1) = 1,12$$

O valor da variação do coeficiente de sustentação da empenagem vertical com a deflexão do leme corrigidos pelo efeito da fresta entre o leme e a deriva será:

$$(a_2)_M = 1,37 \text{ rad}^{-1}$$

Pode-se ainda corrigir o valor desta variação devido aos efeitos de balanceamento do leme. Entende-se por porcentagem de balanceamento a razão entre a área em planta do leme à frente da articulação e a área em planta do mesmo atrás da articulação. Para o presente caso, tem-se aproximadamente:

% Balanceamento =
$$Sr/Sf = 0$$

Desta forma:

$$a_2 = 1,37 \text{ rad}^{-1}$$

18.2.2.4Determinação da Variação da Sustentação da EmpenagemHorizontal com o Ângulo de Deflexão do Compensador ($\eta = 0$) a3:

Por meio da espessura relativa (t/c = 0,15), do alongamento da empenagem (A = 2,4), da relação cf/c = 0,12 e dos coeficientes determinados no item anterior, é possível determinar a partir de gráficos os coeficientes $(a_3)_0$, $(a_3)_{0t}$ e $(a_3)_m$. Consultando a figura 4.12a, obtém-se:

cf/c	$(a_3)_{ot}$
0,1	2,55
0,2	3,75
0,12	2,79

Tabela 18.36 – Interpolação para cáculo de (a₃)_{0t}

 $(a_3)_{ot} = 2,79$

A partir da segunda figura 4.12a, segue-se a relação:

 $\frac{(a_1)_o}{(a_1)_{ot}} = \frac{5,73}{7,04} = 0,814$

 $\frac{c_f}{c} = 0,\!12$

Interpolando valores para cf/c = 0,12:

$(a_1)_o / (a_1)_{ot}$	$(a_3)_0 / (a_3)_{ot}$
0,80	0,63
0.82	0.70
0.814	0,679

Tabela 18.37 Interpolação para cálculo de (a₃)₀

 $\frac{(a_3)_o}{(a_3)_{ot}} = 0,679$

Assim:

 $(a_3)_0 = 0,679 \cdot 2,79 = 1,89 \text{ rad}^{-1}$

M = 0,4

Assim, pela figura 4.12b:

$$A \cdot \sqrt{1 - M^2} = 2, 4 \cdot \sqrt{1 - 0, 4^2} = 2, 20$$

$A \cdot \sqrt{1 - M^2}$	a [*] ₃
2,0	1,185
2,5	1,165
2,20	1,177

Tabela 18.38 – Interpolação para cálculo de a₃*

$$a_3^* = \frac{(a_3)_M \cdot (a_1)_o}{(a_3)_o \cdot (a_1)_M} = 1,177$$

Então:

$$\frac{(a_3)_M \cdot 5,73}{1,89 \cdot 3,19} = 1,177$$

 $(a_3)_M = a_3 = 1,23 \text{ rad}^{-1}$

18.2.2.5 Cálculo da variação do coeficiente de momento na articulação do leme com a variação do ângulo de ataque da empenagem

Do gráfico 4.14(a), UTSCH[1],sendo a razão entre a corda do leme e a corda da deriva igual a 40% e a espessura relativa igual a 15%, tem-se:

$$(b_1)_{ot}^* = -0,65$$

Sabe-se anteriormente que :

$$\frac{(a_1)_0}{(a_1)_{ot}} = 0,814$$

Desta forma, pelo gráfico 4.14(b), tem-se:

Tabela 18.39 Interpolação para cálculo de $(b_1)_0^*$

$\frac{(a_1)_0}{(a_1)_{ot}} = 0,84$	$\frac{(b_1)_0^*}{(b_1)_{ot}^*} = 0,66$
$\frac{(a_1)_0}{(a_1)_{ot}} = 0,86$	$\frac{(b_1)_0^*}{(b_1)_{ot}^*} = 0,71$
$\frac{(a_1)_0}{(a_1)_{ot}} = 0,814$	$\frac{(b_1)_0^*}{(b_1)_{ot}^*} = 0,585$

Assim;

$$(b_1)_0^* = -0.38$$

O valor de $(b_1)_0$ é dado por UTSCH[1]:

$$(b_1)_0 = (b_1)_0^* + 2[(a_1)_{0T} - (a_1)_0]\left(tg\frac{\tau}{2} - t/c\right)$$

Ter-se-á então:

$$(b_1)_0 = -0,592$$

Pode-se então determinar o valor deste coeficiente para o caso de um alongamento finito (tridimensional). A relação entre o valor deste coeficiente bidimensional e o seu valor tridimensional é dada segundo a equação:

$$b_1 = (b_1)_0 \cdot [1 - F_1] + F_2 \cdot F_3 \cdot (a_1)_0$$

Sendo que os valores de F1; F2; e F3 são obtidos pelo gráfico 4.14(c) UTSCH[1]. Sabendo que (Cf/C) é igual a 0,36 temos:

$$F_1 = 0,46$$

 $F_2 = 0,0164$
 $F_3 = 1,15$

Então:

$$b_1 = -0,097 \text{ rad}^{-1}$$

18.2.2.6 Cálculo da variação do coeficiente de momento na articulação do leme com a variação da deflexão do leme.

O valor de $(b_2)_0$ representa b_2 para escoamento bidimensional e sem balanceamento do controle. Pode-se determiná-lo através do gráfico 4.15.

Sendo:

$$\frac{(a_2)_o}{(a_2)_{ot}} = 0,728$$

 $\frac{c_f}{c} = 0,40$

 $\frac{t}{c} = 0.15$

$$(b2)_{ot} = -0,915$$

Pelo mesmo gráfico, acha-se o valor de (b₂)_o.

$\frac{c_f}{c}$	$\frac{(a_2)_o}{(a_2)_{ot}}$	$\frac{(b_2)_o}{(b_2)_{ot}}$
04	0,700	0,660
0,4	0,750	0,735
0,4	0,728	0,805

Tabela 18.40 – Interpolação para cálculo de (b₂)₀

Para $\frac{(a_2)_o}{(a_2)_{ot}}$ igual a 0,728, encontra-se um valor de $\frac{(b_2)_o}{(b_2)_{ot}}$ igual a 0,702. Dessa forma

pode-se calcular $(b_2)_0$ multiplicando este valor por - 0,915. Assim:

 $(b_2)_0 = -0,915 (0,702)$

 $(b_2)_0 = -0,642$

18.2.2.7 Correção de (b₂)_o para o Balanceamento do Profundor

Através do gráfico 4.14b é possível efetuar a correção. Inicialmente, calcula-se a razão de balanceamento através da equação:

Razão de balanceamento = $\sqrt{\left(\frac{c_b}{c_r}\right)^2 - \left(\frac{t/2}{c_r}\right)^2}$

Admitindo que $c_b \cong t/2$,

Razão de balanceamento =
$$\sqrt{\left(\frac{t/2}{c_r}\right)^2 - \left(\frac{t/2}{c_r}\right)^2} = 0$$

Por isso não será necessário fazer nenhuma correção.

18.2.2.8 Determinação de b₂ para Alongamento Finito

A correção para o alongamento finito é feita através da equação:

$$\mathbf{b}_2 = (\mathbf{b}_2)_{\mathbf{o}} - \left(\frac{\alpha_1}{\delta}\right) \cdot (\mathbf{b}_1)_{\mathbf{o}} + \Delta(\mathbf{b}_2) \cdot \mathbf{F}_3 \cdot (\mathbf{a}_2)_{\mathbf{o}}$$

onde: $(b_2)_o$ – valor de b_2 bidimensional e corrigido para o

balanceamento

balanceamento

$$(\alpha_1/\delta)$$
 – valor obtido graficamente (figura 4.14c)
 $(b_1)_o$ – valor de b_1 bidimensional e corrigido para o
 $\Delta(b_2)$ – valor obtido graficamente (figura 4.14c)
 F_3 – valor obtido graficamente (4.14c)
 $(a_2)_o$ – valor de a_2 bidimensional e corrigido para o

balanceamento

Mas:

A = 2,4

$$A \cdot \left(\frac{5,73}{(a_1)_o}\right) = 2,4 \cdot \left(\frac{5,73}{5,73}\right) = 2,4$$

Da figura 4.14c, têm-se (através de interpolação linear para $c_f / c = 0,40$):

$A \cdot \left(\frac{5,73}{(a_1)_o}\right)$	$\left(\frac{\alpha_1}{\delta}\right) \cdot \frac{(a_2)}{(a_2)_o}$
2	0,44
3	0,35
2,4	0,404

Tabela 18.41 – Interpolação para cálculo de	(α_1)	(<i>a</i> ₂)
	$\left(\frac{\delta}{\delta}\right)$	$(a_2)_o$

$$\left(\frac{\alpha_1}{\delta}\right) \cdot \frac{(a_2)}{(a_2)_o} = 0,404$$

Tabela 18.42 – interpolação para cálculo de $\Delta(b_2)$

$A \cdot \left(\frac{5,73}{(a_1)_o}\right)$	$\Delta(b_2)$
2	0,035

3	0,023
2,4	0,0302

 $\Delta(b_2) = 0,0302$

Assim:

$$\frac{\alpha_1}{\delta} = 0,404 \cdot \frac{3,93}{1,37} = 1,159$$

Dessa forma:

 $b_2 = -0.642 - 1.159 \cdot (-0.097) + 0.0302 \cdot (1.15) \cdot 3.93 = -0.393 rad^{-1}$

18.2.2.9 Correção para efeito de Horn

O avião em projeto não possui horn.

18.2.3 Determinação da Variação do Coeficiente de Momento de Articulação com o Ângulo de Deflexão do Compensador b3 = dC_H/dβ

Através da figura 4.16 pode-se obter diretamente o valor de b_3 , onde todos os valores são mostrados esquematicamente e onde s é o valor do ângulo do bordo de fuga do profundor na região do compensador.

Para $\sigma = 8^\circ$, temos F = 1,23

São necessários os seguintes parâmetros (figura 4.16):

 $s_{\rm T} = 0,65 {\rm m}$

 $s_{\rm F} = 2,4m$

C' = 1,25m
C_T = 0,097m
C_F = 0,45m

$$C_{F}' = 0,45m$$

 $\frac{1}{c} = 1,106m$
S_F' = 0,3645m²
S' = 0,081m²
 $\frac{C_{T}}{C'} = 0,0776$

 $\frac{s_F}{s_T} = 3,69$

$$\lambda = \frac{S'}{S_F'} = 0,22$$

$\frac{C_T}{C}$	у
0,07	0,61
0,08	0,66
0,0776	0,648

Tabela 18.43 – Interpolação para cálculo de y

Do gráfico 4.16, tem-se:

$$-\left(\frac{b_3}{F}\right) \cdot \left(\frac{s_f}{s_t}\right) \cdot \left(\frac{C_f}{C_f}\right)^2 = 0,648$$

$$-\left(\frac{b_3}{1,23}\right) \cdot 3,69 \cdot \left(\frac{0,45}{0,45}\right)^2 = 0,855$$

 $b_3 = -0,215 \text{ rad}^{-1}$

18.2.4 Cálculo das características de estabilidade e controle direcionais

18.2.4.1 Margem de estabilidade direcional com os comandos fixos

A margem de estabilidade direcional com os comandos fixos é dada por:

$$\frac{dC_n}{d\beta} = \left[\frac{dC_n}{d\beta}\Big|_0\right]_{S/EV} + \overline{V}_V \cdot a_1 \cdot COS(30^\circ)$$

Sendo que o volume de cauda da empenagem vertical da presente aeronave será:

$$\overline{V}_{v} = \frac{l_{v} \cdot S_{v}}{S \cdot b} = 0.53$$

Desta forma:

$$\frac{dC_n}{d\beta} = 0,368$$

18.2.4.2 Margem de estabilidade direcional com os comandos livres

A margem de estabilidade direcional com os comandos livres é dada por:

$$\frac{dC_n'}{d\beta} = \left[\frac{dC_n}{d\beta}\Big|_0\right]_{S/EV} + \overline{V}_V \cdot \overline{a}_1 \cdot COS(30^\circ) \qquad \text{eq(13)}$$

Sendo:

$$\bar{a}_1 = 2,85$$

Desta forma:

$$\frac{dC_n'}{d\beta} = 0,339$$

18.2.5 Ângulo de flutuação do leme

O ângulo de flutuação do leme é definido como o ângulo que o leme tomará em uma guinada se os comandos forem deixados livres. Tal valor é dado por:

Para o presente projeto ter-se-á:

$$\delta_f = -\frac{-0.097}{-0.393} \cdot \beta = -0.2468 \cdot \beta$$

Resumo dos resultados

Nome	Símbolo	Valor
Coeficiente parametrizado a partir de a1, a2, b1, b2	$\overline{a_1}$	2,85
Volume de cauda da empenagem vertical	\overline{V}	0,53
dCL/dα da empenagem vertical	a ₁	3,19
dCL/dη da empenagem vertical	a ₂	1,37
dCH/da da empenagem vertical	b ₁	-0,097
dCH/dη da empenagem vertical	b ₂	-0,393
Margem de estabilidade direcional com os comandos	$\frac{dC_n}{dC_n} =$	0 368
fixos	$d\beta$	0,500
Margem de estabilidade direcional com os comandos livres	$\frac{dC_n'}{d\beta} =$	0,339
Ângulo de flutuação do leme	$\delta_{_f}$	-0,414β

Tabela 18.44- Resumo de resultados

18.2.6 Força no pedal para manter vôo glissado.

A força no pedal para se manter o vôo glissado é dada pela seguinte equação:

$$P_{e} = m_{e} \cdot \frac{1}{2} \cdot \rho \cdot V^{2} \cdot S_{L} \cdot c_{L} \cdot \left[b_{1} - \left(\frac{dC_{n}}{d\beta} \cdot \frac{b_{2}}{\overline{V}_{V} \cdot a_{2}} \right) \right] \cdot \beta \qquad eq(15)$$

Sendo :me a razão de engrassamento entre os pedais e o leme;

 $S_L\,a$ área do leme

c_L a corda média do leme

Para o presente caso tem-se:

$$S_L = 2,48$$
 $c_L = 0.55$

Desta forma:

$$P_e = 0.0517 \cdot V^2 \cdot \beta$$

A Figura 18.10 apresenta então os valores de força no pedal para diversos casos de vôo glissado.

Força do pedal para vôo glissado

Figura 18.10 – Força no pedal para diversos casos de vôo glissado

Pode-se notar, na Figura 18.10, que as forças no pedal estão muito grandes, e para auxiliar o piloto na força do pedal deve-se colocar um sistema servo-motor para diminuir a força.

18.3 Estabilidade Lateral Estatica

A estabilidade lateral é aquela que mede a tendência da aeronave retornar ao ponto de equilíbrio quando esta é perturbada no eixo de rotação longitudinal. A margem de estabilidade lateral é dada por:

$$\begin{bmatrix} M_{LAT} \end{bmatrix} = \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{TOTAL} = \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{ASAS} + \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{E.V} + \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{E.H} + \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{OUTROS}$$

Onde:

Cl = coeficiente de rolamento β = ângulo de derrapagem Serão consideradas as contribuições das asas e empenagem vertical. A contribuição da empenagem horizontal é nula, já que esta não possui diedro, e a de outros componentes é pouco significativa.

A contribuição das asas para margem de estabilidade lateral é dada por:

$$\left[-\frac{\partial \mathrm{Cl}}{\partial \beta}\Big|_{0}\right]_{\mathrm{ASAS}} = \frac{2}{Sb} \int_{0}^{\frac{b}{2} \sec \Lambda} (\Gamma \cos \Lambda + \alpha_{h}^{0} \operatorname{sen} \Lambda) a_{0h} c_{h} h dh$$

Onde:

S =Área da asa

b = Envergadura da asa

 $\Lambda = \text{Enflexamento a}^{1}/_{4} \text{ da corda}$

 $\Gamma = diedro$

 α_h^0 = ângulo de ataque da cada seção da asa

 $a_{0h} = dCl/d\alpha$ de cada seção da asa

 $c_h = corda \ em \ cada \ seção \ da \ asa$

h = elemento espessura infinitesimal medido perpendicularmente à

envergadura

Simplificando para a nossa aeronave em questão têm-se:

$$\left[-\frac{\partial Cl}{\partial \beta}\Big|_{0}\right]_{ASAS} = 2 \cdot a_{0h} \cdot \left(\Gamma \cos \Lambda + \alpha_{h}^{0} sen\Lambda\right)^{\frac{b}{2} sec\Lambda} \int_{0}^{\frac{b}{2} sec\Lambda} c_{h} h dh$$

Como a asa possui enflexamento nulo a 23% da corda, o ângulo de enflexamento pode ser desprezado. Assim, a equação para a margem de estabilidade lateral fica reduzida a:

$$\left[-\frac{\partial \mathrm{Cl}}{\partial \beta}\Big|_{0}\right]_{\mathrm{ASAS}} = \frac{2 \cdot a_{0h} \cdot \Gamma}{Sb} \int_{0}^{\frac{b}{2}} c_{h} h dh$$

Neste caso, o sinal da margem é definido unicamente pelo diedro e a margem possuirá o mesmo sinal deste.

Para a aeronave em questão tem-se:

 $a_{0h} = 5,67 \text{rad}^{-1}$ $\Gamma = +2^{\circ} = +0,0349 \text{rad}$ $S = 25,0\text{m}^2$ b = 13,0m $c_h = -0,100807\text{h} + 1,665$

Assim, a contribuição das asas para estabilidade lateral vale:

$$\left[-\frac{\partial Cl}{\partial \beta}\Big|_{0}\right]_{ASAS} = 0,0591$$

A contribuição da empenagem vertical é dada por:

$$\left[-\frac{\partial Cl}{\partial \beta} \right|_{0} \right]_{EV} = \frac{\overline{V}_{EV} \cdot h_{EV} \cdot a_{EV}}{X_{EV}}$$

Onde: \overline{V}_{EV} = razão de volumes da cauda vertical = 0,0084

 h_{EV} = altura do centro de pressão da E.V. medido verticalmente em relação ao centro de gravidade = 2,1 m

 $a_{EV} = dCl/d\alpha$ da E.V. = 5,73 rad⁻¹

 X_{EV} = distância horizontal entre o centro de pressão da E.V. e o centro de gravidade da aeronave = 4,5 m

Assim, a contribuição da empenagem vertical para margem de estabilidade lateral vale:

$$\left[-\frac{\partial Cl}{\partial \beta}\Big|_{0}\right]_{EV} = 0,02246$$

Finalmente, a margem lateral total pode ser obtida:

$$\begin{bmatrix} M_{LAT} \end{bmatrix} = \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{TOTAL} = \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{ASAS} + \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{E.V} + \begin{bmatrix} -\frac{\partial Cl}{\partial \beta} \Big|_{0} \end{bmatrix}_{E.H} = 0,0591 + 0,02246$$
$$\begin{bmatrix} M_{LAT} \end{bmatrix} = 0,08156$$

A margem de estabilidade é positiva, assegurando que a aeronave será estável lateralmente.

19 Cargas

19.1 Diagrama Vn

A presente aeronave está sendo desenvolvida de forma a atender ao regulamento FAR-23 Subpart C em conformidade com a classe "Commuter".

19.1.1 Velocidades

a) Velocidade de cruzeiro (Vc)
A velocidade de cruzeiro é estabelecida de acordo com a seção 23.335 (a).
Para o presente caso tem-se que:

A velocidade de cruzeiro foi estabelecida como um requisito de projeto sendo de 450km/h.

O valor de 450km/h = 243kt está de acordo com o regulamento e será adotado.

b) Velocidade de mergulho (Vd)

A velocidade nunca excedida em mergulho pode ser estabelecida segundo a seção 23.335 (b).

b.1 – A velocidade mínima de mergulho não deve ser menor que 125% da velocidade de cruzeiro.Assim:

$$V_{Dmin} = 1,25Vc$$
 (19.1)
Vdmín = 303,75kts

b.2 – A velocidade mínima de mergulho não deve ser menor que 140% do limite inferior estabelecido para velocidade de cruzeiro.Assim:

$$V_{Dmin} = 1,4Vcmin \tag{19.2}$$

Vd mín = 251,23kts

c) Velocidade de manobra (V_A)
 A velocidade de manobra é estabelecida segundo os requisitos da mesma seção dos itens anteriores.

c.1 - A velocidade de manobra mínima é dada pela equação 19.3.

$$V_A = V s l \sqrt{n_{max}} \tag{19.3}$$

Onde

Vs1 - Velocidade de estol sem flap com a aeronave em peso de projeto = 68,34kts.

n – Fator de carga máximo definido para o projeto = 3,41

 $V_{Amin} = 68,34.(3,41)^{1/2} = 126,19$ kts

c.2 – A velocidade de manobra não deve exceder a velocidade de cruzeiro Assim:

$$V_A < V_C V_A < 243 kts$$

Assim $V_A = 126,19$ Kts

d) Velocidade para máxima intensidade de rajada (V_B)

A velocidade para máxima intensidade de rajada é obtida como a seguir.

 $V_B = Vs2\sqrt{n_{min}}$

Vs2 - Velocidade de estol sem flap com a aeronave em peso de projeto e dorso =86,67kts .

n – Fator de carga máximo negativo definido para o projeto = 1,52 (ver comentários posteriores)

Assim:

 V_{B} = 106,85 kts

Além disso V_B<V_C.

e) Velocidade máxima de operação com flapes (Vf)

A velocidade máxima de operação com flapes é estabelecida seguindo os requisitos da seção 23.345.

A velocidade máxima de operação com flap deve ser maior que 1,4 Vs ou 1,8 Vsf sendo Vs a velocidade de estol sem flape e Vsf a velocidade de estol com flap.

As velocidades são : Vs = 68,34 kts Vsf = 61,98 kts

Vf=1,4 Vs = 1,4.68,34 = 95,68 kts Vf = 1,8Vsf = 1,8 .61,98 = 111,6kts

Assim Vf= 111,6 kts.

19.1.2 Fatores de carga e de manobra

O requisito da seção 23.337(a) indica que o fator de carga de manobra limite positivo deve atender à equação 19.4.

$$n\rangle 2,1 + \frac{24000}{W + 10000} \tag{19.4}$$

Onde W – Peso máximo de decolagem = 3740Kg = 8245,29lbs

O fator de carga de manobra limite negativo deve atender à equação 19.5

$$n\rangle \ge 0.4n_{\lim pos} \tag{19.5}$$

Assim n será adotado como o valor limite de -1,52.

De acordo com a seção 23.345 (a)1 o fator de carga limite positivo de manobra quando operando com flapes é de 2,0.

Os fatores de cargas de rajada são calculados segundo a seção 23.341 de acordo com a equação 19.6.

$$n = 1 \pm \frac{Kg.Ude.V.a}{498(W/S)}$$
(19.6)

Onde: Kg- Fator de alívio de rajada = $\frac{0.88 \mu g}{5.3 + \mu g}$

$$\mu g - \text{Fator de massa da aeronave} = \frac{2(W/S)}{\rho_0 c.a.g}$$

c- corda média geométrica = S/b = 5,13ft
V - velocidade equivalente [kts]
W/S - carga alar = 30,6405 lb/ft²
 ρ_0 - densidade do ar ao nível do mar = 0,00238 slug/ft³
g- aceleração da gravidade = 32,2 ft/s²
a - variação do coeficiente de sustentação da aeronave com o

ângulo de ataque da mesma 5,67/rad.

assim:

 $\mu g = 34,485$ Kg = 0,762

Assim $n = 1 \pm 0,0002925.Ude.V$

O regulamento determina que os fatores de carga devam ser calculados para as condições apresentadas na tabela 19.1.

		0	
Velocidades		25000 ft	n
Vc	V=243kts	Ude = 45,83ft/s	n=3,42
			n=-1,42
Vd	V=304kts	Ude = 22,92ft/s	n=2,57
			n=-0,57
VB	V=98,63kts	Ude = 61,3 ft/s	n=2,36
			n=-0,36

Tabela 19.1 - Fatores de cargas de rajada

19.1.3 Curvas para coeficiente de sustentação máximos

As curvas de vôo com coeficiente de sustentação máximo são obtidas pela equação 19.7

$$n = \frac{\rho . S . V^2 C_{Lmáx}}{2.W} \tag{19.7}$$

Tem-se duas situações :

- i) Vôo sem flape
- ii) Vôo com flape

A partir da determinação da perfilagem e da área da asa tem-se:

 $C_{Lmáx,Limpo} = 1,98$ (médio dos perfis)

O acréscimo devido ao flape é de $\Delta C_L = 0,42$

 $C_{L máx flape} = 2,4$

Assim, substituindo os valores na equação tem-se:

$$n_{\lim po} = 2,19E^{-4}V^2$$

 $n_{Flape} = 2,65E^{-4}V^2$

A partir dos valores obtidos pode-se traçar as curvas dos diagramas Vxn de manobras e de rajada conforme figura x.1 e assim definir a região permitida para a aeronave em projeto.

Figura 19.1 - Diagrama Vn de manobra e rajada

Para o cálculo das cargas atuantes na asa, deve-se determinar a distribuição de sustentação ao longo da envergadura da mesma e a distribuição de peso da asa. O método utilizado para se determinar a distribuição de sustentação neste projeto, foi o método de Vórtice Lattice.

19.3 Distribuição de Sustentação

Figura 19.2 – Distribuição de C_L

19.4 Manobras Simétricas

As cargas de manobras simétricas, com fator de carga limite igual a 3,41, estão apresentadas na tabela a seguir.

		Peso	Sustentação	Resultante	Cortante	Fletor	Cortante	Fletor
Estação	Posição	(kof)	(kof)	(kof)	(kof)		Limite	Limite
		(Kgi)	(ingi)	(Kgi)	(KgI)	(Kgiin)	(kgf)	(kgf.m)
1	7.98	6.8	0,88	-5,97	-5,97	-0,15	-24,19	-0,60
2	7.90	7.0	4,61	-2,39	-8,36	-0,38	-33,85	-1,55
3	7.78	7.2	11,04	3,87	-4,49	0,47	-18,17	1,92
4	7.61	7.3	19,92	12,59	8,10	5,40	32,81	21,88
5	7.39	7.5	30,79	23,29	31,39	19,58	127,13	79,32
6	7.13	7.7	43,16	35,49	66,88	50,53	270,87	204,65
7	6.82	7.8	56,62	48,79	115,67	108,04	468,46	437,58
8	6.47	8.0	70,74	62,74	178,41	203,90	722,55	825,80
9	6.08	8.2	85,19	77,02	255,43	351,53	1034,49	1423,70
10	5.66	8.3	99,70	91,36	346,79	565,60	1404,49	2290,67
11	5.20	8.5	114,05	105,54	452,33	861,59	1831,94	3489,42
12	4.70	8.7	128,02	119,35	571,68	1255,17	2315,31	5083,45
13	4.18	8.8	141,42	132,58	704,26	1761,62	2852,25	7134,57
14	3.63	9.0	154,00	145,00	849,26	2394,99	3439,50	9699,70
15	3.06	9.2	165,52	156,35	1005,61	3167,14	4072,73	12826,9
16	2.47	9.4	175,69	166,27	1171,88	4086,25	4746,11	16549,3
17	1.87	9.5	184,15	174,64	1346,52	5157,24	5453,42	20886,8
18	1.25	9.7	190,47	180,80	1527,32	6377,37	6185,66	25828,3
19	0.63	9.8	194,09	184,25	1711,57	7735,73	6931,88	31329,7

Tabela 19.2 - Cálculo do cortante e fletor da asa

19.5 Manobras Assimétricas

As manobras assimétricas nas asas foram determinadas conforme o regulamento FAR PART 23.349, que prevê para aeronaves na categoria commuter, 100% da carga em uma das asas e 75% das cargas na outra asa. A tabela abaixo mostra o carregamento com 75% da sustentação.

Estação	Posição	Peso (kgf)	Sustentação (kgf)	Resultante (kgf)	Cortante Limite (kgf)	Fletor Limite (kgf.m)
1	7.98	6.8	0,66	-6,19	-25,08	-0,62
2	7.90	7.0	3,46	-3,54	-39,41	-2,03
3	7.78	7.2	8,28	1,11	-34,91	-1,03
4	7.61	7.3	14,94	7,61	-4,10	11,03
5	7.39	7.5	23,09	15,59	59,05	49,48
6	7.13	7.7	32,37	24,70	159,09	136,71
7	6.82	7.8	42,47	34,63	299,35	302,06
8	6.47	8.0	53,06	45,05	481,81	580,84
9	6.08	8.2	63,89	55,72	707,49	1013,41
10	5.66	8.3	74,77	66,44	976,55	1643,87
11	5.20	8.5	85,54	77,03	1288,53	2518,78
12	4.70	8.7	96,02	87,35	1642,28	3685,35
13	4.18	8.8	106,06	97,22	2036,04	5189,51
14	3.63	9.0	115,50	106,50	2467,36	7073,53
15	3.06	9.2	124,14	114,97	2932,99	9373,10
16	2.47	9.4	131,77	122,35	3428,49	12112,14
17	1.87	9.5	138,11	128,61	3949,35	15306,25
18	1.25	9.7	142,85	133,18	4488,73	18946,30
19	0.63	9.8	145,57	135,73	5038,43	22998,88

Tabela 19.3 - Cálculo do cortante e fletor da asa para manobras assimétricas

19.6 Manobras de Rolamento

As cargas nas asas em manobras de rolamento foram determinadas conforme o regulamento FAR-PART 23.349, na qual se deve considerar dois terços do fator de carga limite agindo sobre a asa, além de deflexão total do aileron. Para a determinação das cargas nos ailerons foi utilizada a figura A6 do apêndice A deste mesmo regulamento.

De acordo com o apêndice A do regulamento FAR-PART 23, a figura A6 prevê cargas nos ailerons conforme a equação abaixo.
$w = 0,466 \cdot n \cdot \frac{W}{S}$

O peso máximo de decolagem é 3740kgf, n é igual a 3,41 e S vale 25m².

$w = 237,72 kgf/m^2$

A área do aileron é igual a 0,57m². Logo:

 $P = S_{aileron} \cdot w$ P = 135,50 kgf

Este valor deve ser dividido pelo número de charneiras do aileron.

Estação	Posição	Carga Aileron (kgf)	Cortante (kgf)	Fletor (kgf.m)
1	7.98	0.00	0.00	0.00
2	7.90	0.00	0.00	0.00
3	7.78	0.00	0.00	0.00
4	7.61	0.00	0.00	0.00
5	7.39	0.00	0.00	0.00
6	7.13	67.75	67.75	59.07
7	6.82	0.00	67.75	79.87
8	6.47	0.00	67.75	103.51
9	6.08	0.00	67.75	129.86
10	5.66	67.75	135.50	317.50
11	5.20	0.00	135.50	380.00
12	4.70	0.00	135.50	446.84
13	4.18	0.00	135.50	517.61
14	3.63	0.00	135.50	591.87
15	3.06	0.00	135.50	669.17
16	2.47	0.00	135.50	749.03
17	1.87	0.00	135.50	830.95
18	1.25	0.00	135.50	914.43
19	0.63	0.00	135.50	998.95

Tabela 19.4 - Cálculo do cortante e fletor no aileron

Logo, deve-se somar o valor das cargas nos ailerons, com 66% do valor total das cargas simétricas.

		Cortante	Fletor	Carga	Cortante	Fletor	Cortante	Fletor
Estação	Posição	(leaf)	(leaf m)	Aileron	Aileron	Aileron	Limite	Limite
		(KgI)	(kgi.m)	(kgf)	(kgf)	(kgf.m)	(kgf)	(kgf.m)
1	7.98	-3,94	-0,10	0.00	0.00	0.00	-3,94	-0,10
2	7.90	-5,52	-0,25	0.00	0.00	0.00	-5,52	-0,25
3	7.78	-2,96	0,31	0.00	0.00	0.00	-2,96	0,31
4	7.61	5,35	3,57	0.00	0.00	0.00	5,35	3,57
5	7.39	20,72	12,93	0.00	0.00	0.00	20,72	12,93
6	7.13	44,14	33,35	67.75	67.75	59.07	111,89	92,43
7	6.82	76,34	71,31	0.00	67.75	79.87	144,09	151,18
8	6.47	117,75	134,58	0.00	67.75	103.51	185,50	238,09
9	6.08	168,58	232,01	0.00	67.75	129.86	236,33	361,87
10	5.66	228,88	373,29	67.75	135.50	317.50	364,38	690,79
11	5.20	298,54	568,65	0.00	135.50	380.00	434,04	948,64
12	4.70	377,31	828,41	0.00	135.50	446.84	512,81	1275,25
13	4.18	464,81	1162,67	0.00	135.50	517.61	600,31	1680,28
14	3.63	560,51	1580,69	0.00	135.50	591.87	696,01	2172,57
15	3.06	663,70	2090,32	0.00	135.50	669.17	799,20	2759,49
16	2.47	773,44	2696,92	0.00	135.50	749.03	908,94	3445,95
17	1.87	888,71	3403,78	0.00	135.50	830.95	1024,21	4234,72
18	1.25	1008,03	4209,06	0.00	135.50	914.43	1143,53	5123,49
19	0.63	1129,64	5105,58	0.00	135.50	998.95	1265,14	6104,53

Tabela 19.5 - Cálculo do cortante e fletor resultante

19.7 Cargas devido ao uso de flapes

As cargas devido ao uso dos flapes foram determinadas conforme o regulamento FAR PART 23.345, onde se deve considerar máxima deflexão dos flapes somada as cargas simétricas de vôo, com um fator de carga de 2.

Para se determinar as cargas nos flaps devido a sua deflexão foi utilizado o apêndice A do mesmo regulamento, figura A6. O vaião em projeto possui duas áreas de flap

distintas, onde o mais próximo da raiz possui área igual a 0,74m² e o mais próximo da ponta com área de 0,67m². Desta forma:

 $w = 139,42 kgf/m^2$

Somando as áreas e multiplicando pelo carregamento:

w = 196,58kgf

Estação	Posição	Carga Flapes (kgf)	Cortante (kgf)	Fletor (kgf.m)
1	7.98	0.00	0.00	0.00
2	7.90	0.00	0.00	0.00
3	7.78	0.00	0.00	0.00
4	7.61	0.00	0.00	0.00
5	7.39	0.00	0.00	0.00
6	7.13	0.00	0.00	0.00
7	6.82	0.00	0.00	0.00
8	6.47	0.00	0.00	0.00
9	6.08	0.00	0.00	0.00
10	5.66	0.00	0.00	0.00
11	5.20	0.00	0.00	0.00
12	4.70	49.15	49.15	162.07
13	4.18	0.00	49.15	187.74
14	3.63	49.15	98.29	429.34
15	3.06	0.00	98.29	485.41
16	2.47	49.15	147.44	815.01
17	1.87	0.00	147.44	904.15
18	1.25	49.15	196.58	1326.64
19	0.63	0.00	196.58	1449.27

Tabela 19.6 - Cálculo do cortante e fletor no flap

Logo, deve-se somar o valor das cargas nos flaps, com as cargas de manobras simétricas, com um fator de carga igual a 2.

		Contonto	Flatar	Carga	Cortante	Fletor	Cortante	Fletor
Estação	Posição		rietor	Flap	Flap	Flap	Limite	Limite
		(KgI)	(kgi.m)	(kgf)	(kgf)	(kgf.m)	(kgf)	(kgf.m)
1	7.98	-11,94	-0,29	0.00	0.00	0.00	-11,94	-0,29
2	7.90	-16,72	-0,76	0.00	0.00	0.00	-16,72	-0,76
3	7.78	-8,97	0,95	0.00	0.00	0.00	-8,97	0,95
4	7.61	16,20	10,80	0.00	0.00	0.00	16,20	10,80
5	7.39	62,78	39,17	0.00	0.00	0.00	62,78	39,17
6	7.13	133,76	101,06	67.75	67.75	59.07	133,76	101,06
7	6.82	231,34	216,09	0.00	67.75	79.87	231,34	216,09
8	6.47	356,82	407,80	0.00	67.75	103.51	356,82	407,80
9	6.08	510,86	703,06	0.00	67.75	129.86	510,86	703,06
10	5.66	693,57	1131,20	67.75	135.50	317.50	693,57	1131,20
11	5.20	904,66	1723,17	0.00	135.50	380.00	904,66	1723,17
12	4.70	1143,36	2510,34	0.00	135.50	446.84	1192,51	2672,41
13	4.18	1408,52	3523,25	0.00	135.50	517.61	1457,67	3710,98
14	3.63	1698,52	4789,97	0.00	135.50	591.87	1796,81	5219,32
15	3.06	2011,22	6334,29	0.00	135.50	669.17	2109,52	6819,70
16	2.47	2343,76	8172,50	0.00	135.50	749.03	2491,20	8987,51
17	1.87	2693,05	10314,48	0.00	135.50	830.95	2840,48	11218,63
18	1.25	3054,65	12754,74	0.00	135.50	914.43	3251,23	14081,38
19	0.63	3423,15	15471,47	0.00	135.50	998.95	3619,73	16920,74
	1	1		1	1	1	1	1

Tabela 19.7 - Cálculo do cortante e fletor resultante

As figuras abaixo mostram os gráficos para o cortante e para o fletor nas quatro situações calculadas.

Figura 19.3 – Gráfico para o Cortante

Figura 19.4 - Gráfico para o Fletor

19.8 Cargas de torção

O valor dos momentos de torção sobre a asa será determinado. Este esforço ocorre devido a duas fontes distintas: uma devido ao próprio coeficiente de momento do perfil, e outra devido à força de sustentação gerada na asa, que se encontra fora do centro de torção da mesma. No entanto será adotada a hipótese de que somente as forças devido

ao coeficiente de momento do perfil estão atuantes, desprezando o momento causado pela força de sustentação gerada na asa.

Para se determinar os esforços de torção sobre a asa, será utilizado o regulamento FAR PART 23.349 na qual se deve considerar a distribuição de momentos sobre a asa em três condições:

- Aeronave voando a Vf e 45° de deflexão dos flaps
- Aeronave voando a Va e 30° de deflexão dos ailerons
- Aeronave voando a Vd, e 10° de deflexão dos ailerons

Estação	СМ	Area	Posição	Corda	ΔMomento Torção	Momento de Torção
1	-0,09	0,5405	7,975	1,27	-923,29	-923,29
2	-0,09	0,5524	7,902	1,27	-947,71	-1871,00
3	-0,09	0,5656	7,779	1,28	-977,30	-2848,30
4	-0,09	0,5787	7,608	1,29	-1009,84	-3858,14
5	-0,09	0,5919	7,391	1,31	-1045,78	-4903,91
6	-0,09	0,6051	7,128	1,33	-1085,06	-5988,97
7	-0,09	0,6183	6,821	1,35	-1127,76	-7116,73
8	-0,09	0,6315	6,472	1,38	-1173,94	-8290,66
9	-0,09	0,6446	6,083	1,41	-1223,43	-9514,09
10	-0,09	0,6578	5,657	1,44	-1276,61	-10790,70
11	-0,09	0,671	5,196	1,47	-1333,27	-12123,97
12	-0,09	0,6842	4,702	1,51	-1393,35	-13517,32
13	-0,09	0,6974	4,180	1,55	-1456,76	-14974,08
14	-0,09	0,7106	3,632	1,59	-1523,39	-16497,46
15	-0,09	0,7237	3,061	1,63	-1592,87	-18090,34
16	-0,09	0,7435	2,472	1,68	-1680,40	-19770,74
17	-0,09	0,7501	1,868	1,72	-1740,79	-21511,53
18	-0,09	0,7633	1,251	1,77	-1818,59	-23330,12
19	-0,09	0,7765	0,628	1,81	-1898,62	-25228,74

Tabela 19.8 - Cálculo da torção da asa

19.9 Cargas nas empenagens

19.9.1 Cargas na empenagem horizontal

As cargas nas empenagens devem ser calculadas para duas condições distintas:

- Durante o início da manobra combinando o valor de carga de equilíbrio com o valor de carga de manobra;
- Durante a manobra, subtraindo do valor de equilíbrio com fator de carga limite o valor da carga de manobra.

19.9.2 Cargas de equilíbrio para vôo com fator de carga um

A força imposta na empenagem para manter o equilíbrio em um vôo reto e nivelado pode ser expressa pela equação:

$$P = \frac{1}{2} \cdot \rho \cdot V^2 \cdot S_{EH} \cdot C_{L_{EH}}$$

Na qual:

$$C_{L_{EH}} = \left(\frac{C_{M0} + C_L \cdot (h - h_o)}{\bar{V}}\right)$$

$$C_L = \frac{2 \cdot W}{\rho \cdot S \cdot V^2}$$

Devem ser consideradas quatro condições de carregamento da aeronave para se determinar as cargas limites nas empenagens. As condições são:

- h = 0,152 W = 2998,2kgf
 h = 0,208 W = 3531,5kgf
- 3. h = 0,264 W = 2705,6kgf
- 4. h = 0.321 W = 3141.4kgf

A tabela abaixo mostra os resultados dos valores de força na empenagem sob fator de carga igual a um.

	Carga de equilíbrio para fator de carga igual a 1														
	Vel [m/s]	35	45	55	65	75	85	95	105	115	125				
h1 0,152	P [kgf]	-274,8	-504,2	-790,9	-1135	-1536,4	-1995,1	-2511,2	-3084,7	-3715,5	-4403,6				
h2 0,208	P [kgf]	-169,5	-398,9	-685,6	-1029,7	-1431,1	-1889,9	-2406,0	-2979,5	-3610,3	-4298,4				
h3 0,264	P [kgf]	-141,8	-371,2	-657,9	-1002,0	-1403,4	-1862,2	-2378,3	-2951,7	-3582,5	-4270,7				
h4 0,321	P [kgf]	-25,1	-254,5	-541,2	-885,3	-1286,7	-1745,5	-2261,6	-2835,0	-3465,8	-4154,0				

19.9.3 Cargas de equilíbrio para vôo com fator de carga limite

Deve-se também determinar a força na empenagem para manter equilíbrio, para vôos com fator de carga limite. Para tal deve-se utilizar a equação abaixo:

$$P = \frac{1}{2} \cdot \rho \cdot V^2 \cdot S_{EH} \cdot \left(\frac{C_{M0} + C_L \cdot (h - h_o)}{\bar{V}}\right)$$

Onde:

$$C_L = \frac{2 \cdot n \cdot W}{\rho \cdot S \cdot V^2}$$

As condições de carregamento da aeronave serão idênticas ao item anterior, sendo que é necessário considerar, para cada velocidade de vôo, o fator de carga máximo correspondente, conforme previsto no diagrama Vn de manobras e rajadas da aeronave.

Pode-se então determinar para cada velocidade de vôo qual deve ser a força exercida pelo profundor para se manter equilíbrio. A tabela abaixo:

	Cargas de equilíbrio para vôo com fator de carga limite												
	Vel [m/s]	35,0	45,0	55,0	65,0	75,0	85,0	95,0	105,0	115,0	125,0		
	Fator carga	1,0	1,9	2,4	3,4	3,4	3,4	3,4	3,6	3,8	4,1		
h1 0,152	P [kgf]	-274,8	-435,4	-680,9	-950,8	-1352,3	-1811,0	-2327,1	-2889,1	-3500,8	-4170,6		
h2 0,208	P [kgf]	-169,6	-235,5	-424,1	-592,0	-993,4	-1452,2	-1968,3	-2514,5	-3099,9	-3744,4		
h3 0,264	P [kgf]	-141,9	-182,8	-356,5	-497,4	-898,8	-1357,6	-1873,7	-2415,8	-2994,2	-3632,1		
h4 0,321	P [kgf]	-25,2	38,9	-71,7	-99,5	-500,9	-959,7	-1475,8	-2000,3	-2549,6	-3159,5		

Tabela 19.10 - Cargas na empenagem com fator de carga limite

19.9.4 Acréscimo de cargas devido a manobras

Para se determinar o acréscimo de cargas devido às manobras, foi utilizado o requisito FAR-PART 23.423(d), onde o acréscimo pode ser dado pela equação:

$$\Delta \mathbf{P} = \Delta \mathbf{n} \cdot \mathbf{W} \cdot \left[\frac{\mathbf{h} \cdot \overline{\mathbf{c}}}{\mathbf{l}_{t}} - \frac{\mathbf{S}_{\mathbf{EH}} \cdot \mathbf{a}_{1}}{\mathbf{S} \cdot \mathbf{a}} \left(1 - \frac{d\varepsilon}{d\alpha} \right) - \rho \cdot \left(\frac{\mathbf{S}_{\mathbf{EH}} \cdot \mathbf{a}_{\mathbf{EH}} \cdot \mathbf{l}_{t} \cdot \mathbf{g}}{2 \cdot \mathbf{W}} \right) \right]$$

Pode-se então, determinar o acréscimo de carga devido à manobra. Para tal, devem-se considerar os limites positivos e negativos do diagrama Vn.

		Vel [m/s]	45	55	65	75	85	95	105	115	125
h1	0,152	$\Delta P+$	-397,0	-635,2	-1063,0	-1063,0	-1063,0	-1063,0	-1129,2	-1239,4	-1345,3
W1(kgf)	2998,2	ΔP-	882,2	1111,5	1111,5	1111,5	1111,5	1111,5	1129,2	1239,4	1323,2
h2	0,208	$\Delta P+$	-414,5	-663,2	-1110,0	-1110,0	-1110,0	-1110,0	-1179,0	-1294,2	-1404,7
W2(kgf)	3531,52	ΔP-	921,1	1160,6	1160,6	1160,6	1160,6	1160,6	1179,0	1294,2	1381,7
h3	0,264	$\Delta P+$	-276,9	-443,0	-741,5	-741,5	-741,5	-741,5	-787,6	-864,6	-938,4
W3(kgf)	2705,64	ΔP-	615,3	775,3	775,3	775,3	775,3	775,3	787,6	864,6	923,0
h4	0,321	$\Delta P+$	-273,4	-437,5	-732,2	-732,2	-732,2	-732,2	-777,8	-853,8	-926,7
W4(kgf)	3141,43	ΔP-	607,7	765,7	765,7	765,7	765,7	765,7	777,8	853,8	911,5

Tabela 19.11 - Acréscimo de carga na empenagem

19.9.5 Carga total na empenagem

A partir dos dados acima é possível determinar a carga total na empenagem para cada condição de vôo. Para isto será utilizado o regulamento FAR-PART 23.423. Serão consideradas duas condições distintas:

- Somatório entre o valor de carga de equilíbrio para n = 1 e o valor do acréscimo de carga devido à manobra;
- Diferença entre o valor de carga para equilíbrio com fator de carga limite e o valor de acréscimo devido à manobra.

A tabela mostra os resultados para a primeira condição.

		Vel [m/s]	45	55	65	75	85	95	105	115	125
h1	0,152	ΔP+	-901,2	-1426,1	-2198,0	-2599,4	-3058,2	-3574,3	-4213,9	-4955,0	-5749,0
W1(kgf)	2998,2	ΔР-	607,3	607,3	320,6	-23,5	-424,9	-883,7	-1382,1	-1845,3	-2392,3
h2	0,208	ΔP +	-584,1	-1062,2	-1795,7	-2139,7	-2541,1	-2999,9	-3585,1	-4273,7	-5015,0
W2(kgf)	3531,52	ΔР-	751,5	761,6	474,9	130,8	-270,6	-729,3	-1227,0	-1685,3	-2228,6
h3	0,264	ΔP +	-418,8	-814,3	-1399,5	-1743,5	-2144,9	-2603,7	-3166,0	-3816,3	-4521,0
W3(kgf)	2705,64	ΔР-	473,5	404,1	117,4	-226,7	-628,1	-1086,9	-1590,7	-2087,2	-2659,6
h4	0,321	ΔP +	-298,6	-692,1	-1273,5	-1617,6	-2019,0	-2477,8	-3039,4	-3688,8	-4392,6
W4(kgf)	3141,43	ΔР-	582,5	511,1	224,4	-119,7	-521,1	-979,9	-1483,8	-1981,3	-2554,4

Tabela 19.12 - Carga total na empenagem

A tabela seguinte se refere aos resultados na condição de número 2 apresentada acima:

		Vel [m/s]	45	55	65	75	85	95	105	115	125
h1	0,152	Δ P +	122,1	199,7	382,1	112,2	-289,3	-748,0	-1198,0	-1649,7	-2155,5
W1(kgf)	2998,2	ΔР-	-1157,0	-1546,9	-1792,4	-2062,4	-2463,8	-2922,5	-3456,3	-4128,6	-4824,1
h2	0,208	ΔP+	244,9	427,7	685,8	518,0	116,5	-342,2	-789,2	-1220,3	-1695,2
W2(kgf)	3531,52	ΔΡ-	-1090,7	-1396,1	-1584,7	-1752,6	-2154,0	-2612,8	-3147,3	-3808,7	-4481,6
h3	0,264	ΔP+	135,0	260,3	385,0	244,1	-157,4	-616,1	-1086,1	-1551,2	-2055,8
W3(kgf)	2705,64	ΔР-	-757,2	-958,1	-1131,8	-1272,8	-1674,2	-2132,9	-2661,4	-3280,3	-3917,2
h4	0,321	Δ P +	248,3	476,5	660,5	632,8	231,3	-227,4	-698,0	-1146,5	-1622,9
W4(kgf)	3141,43	ΔΡ-	-632,8	-726,7	-837,4	-865,1	-1266,6	-1725,3	-2253,6	-2854,1	-3461,1

Tabela 19.13 - Carga total na empenagem

Analisando as duas tabelas, é possível concluir que:

- Carga máxima positiva: 761,6kgf a 55m/s com W = 3531,52kgf, executando uma manobra que parte do vôo com fator de carga limite até um vôo com fator de carga igual a um;
- Carga máxima negativa: -5749,0kgf a 125m/s com W = 2998,2 kgf, executando uma manobra que parte do vôo com fator de carga igual a um até um vôo com fator de carga limite.

19.9.6 Carga devido à rajada na empenagem

As cargas de rajada na empenagem foram determinadas conforme o regulamento JAR-VLA 425. Para tal, deve-se considerar a aeronave em vôo reto nivelado, com flapes retraídos, e velocidade de rajada conforme especificado no diagrama Vn.

Pelo regulamento, o acréscimo devido à rajada é dado pela equação:

$$\Delta P_{U} = \frac{k_{g} \cdot U_{de} \cdot V \cdot a_{1} \cdot S_{EH}}{16,3} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$$

Onde:

$$k_g = \frac{0.88 \cdot \mu_g}{5.3 + \mu_g}$$
$$\mu_g = \frac{2 \cdot \left(\frac{W}{S}\right)}{\rho \cdot \bar{c} \cdot a}$$

 U_{de} é a velocidade de rajada e vale 50 ft/s.

		Vel [m/s]	45	55	65	75	85	95	105	115	125
W1(kgf)	2998,2	ΔPu	543,5	664,3	785,1	905,9	1026,7	1147,5	1268,3	1389,0	1509,8
W2(kgf)	3531,52	ΔPu	550,6	672,9	795,3	917,6	1040,0	1162,3	1284,7	1407,0	1529,4
W3(kgf)	2705,64	ΔPu	538,6	658,3	778,0	897,7	1017,4	1137,1	1256,8	1376,4	1496,1
W4(kgf)	3141,43	ΔPu	545,6	666,9	788,2	909,4	1030,7	1151,9	1273,2	1394,4	1515,7

Tabela 19.14 - Acréscimo devido a rajada na empenagem

Para se determinar as cargas devido à rajada, devem-se considerar duas formas distintas.

- Cargas simétricas para fator de carga 1 mais acréscimo devido à rajada positiva;
- Cargas simétricas para fator de carga 1 mais acréscimo devido à rajada negativa.

A tabela mostra os resultados para rajadas positivas.

		Vel [m/s]	45	55	65	75	85	95	105	115	125
W1(kgf)	2998,2	Praj	268,7	160,1	-5,8	-229,1	-509,7	-847,7	-1243,0	-1695,7	-2205,7
W2(kgf)	3531,52	Praj	381,0	274,0	109,6	-112,1	-391,2	-727,6	-1121,4	-1572,5	-2080,9
W3(kgf)	2705,64	Praj	396,8	287,1	120,0	-104,4	-386,1	-725,2	-1121,6	-1575,3	-2086,4
W4(kgf)	3141,43	Praj	520,5	412,4	246,9	24,1	-256,1	-593,6	-988,5	-1440,7	-1950,2

Tabela 19.15 - Carga devido a rajada na empenagem

A tabela mostra os resultados para rajadas negativas.

		Vel [m/s]	45	55	65	75	85	95	105	115	125
W1(kgf)	2998,2	Praj	-818,4	-1168,5	-1576,0	-2040,9	-2563,1	-3142,7	-3779,5	-4473,8	-5225,4
W2(kgf)	3531,52	Praj	-720,2	-1071,9	-1481,0	-1947,4	-2471,2	-3052,3	-3690,7	-4386,5	-5139,7
W3(kgf)	2705,64	Praj	-680,5	-1029,5	-1436,0	-1899,7	-2420,8	-2999,3	-3635,1	-4328,2	-5078,7
W4(kgf)	3141,43	Praj	-570,8	-921,4	-1329,4	-1794,7	-2317,4	-2897,4	-3534,8	-4229,5	-4981,6

Tabela 19.16 - Carga devido a rajada na empenagem

Analisando as tabelas, conclua-se:

- 1. Carga máxima positiva: 520,5kgf a 45m/s com W = 3141,43
- 2. Carga máxima negativa: -5225,4kgf a 125m/s com W = 2998,2kgf

X.2.7- Limites de carga na empenagem

Os limites de carga na empenagem são:

- Carga máxima positiva: 761,6kgf a 55m/s com W = 3531,52kgf
- Carga máxima negativa: -5749,0kgf a 125m/s com W = 2998,2 kgf

19.9.7 Cargas assimétricas

As cargas assimétricas na empenagem foram determinadas conforme o regulamento FAR-PART 23.427(b). O regulamento prevê duas condições de carregamento assimétrico:

- 1. 100% da carga máxima devido ao vôo simétrico em um lado da empenagem;
- 100-10.(n-1)% da carga máxima devido ao vôo simétrico aplicado no outro lado da empenagem

Tanto as cargas positivas quanto as negativas devem ser consideradas. Logo para as cargas positivas, tem-se que:

P = 761, 6/2 = 380, 8 kgf

P' = (100-10.(4,05-1)%) = 529,3kgf

Para as cargas negativas:

P = -5749,0/2 = -2874,5 kgf

P' = (100-10.(4,05-1)%) = -3995,5

19.9.8 Distribuição de cargas na empenagem

Para o cálculo das cargas nas longarinas da empenagem, será considerada apenas aquela de maior módulo, uma vez que as longarinas são simétricas.

19.9.8.1 Cargas de manobra

A distribuição das cargas de manobras será feita conforme o regulamento FAR-PART 23, apêndice A., tabela 2. A figura abaixo fornece a distribuição de sustentação na corda da raiz da empenagem, para cargas de manobra.

Figura 19.5 – Esquema da empenagem

Desta forma é possível calcular as parcelas que cada longarina resiste.

$$\frac{w}{2} \cdot 750 + \frac{w}{2} \cdot 450 = P = 5749,0$$

w = 9,58 kgf/mm

 $w' = \frac{363.6 \cdot w}{750} = 4.64 kgf / mm$

Logo:

S1 = w'.(363,6/2) = 843,6kgf

$$S2 = \left(w + w'\right) \cdot \left[\frac{750 - 363.6}{2}\right] + w \cdot \frac{450}{2} = 4902.8 kgf$$

19.9.8.2 Cargas de rajada

A distribuição de cargas de rajadas foi determinada através da tabela 2 do regulamento FAR-PART 23 apêndice A. A figura abaixo fornece esta distribuição na corda da raiz da empenagem.

Figura 19.6 – Esquema da empenagem

Desta forma é possível calcular as parcelas que cada longarina resiste.

$$\frac{(4 \cdot w + w)}{2} \cdot \frac{c}{4} + \frac{w}{2} \cdot \frac{3 \cdot c}{4} = P = 5225,4$$

w = 4,35 kgf/mm

$$w' = \frac{775 \cdot w}{\left(\frac{3c}{4}\right)} = 3,74 kgf / mm$$

Logo:

S1 =
$$\frac{(4 \cdot w + w)}{2} \cdot \frac{c}{4} + \frac{(w + w')}{2} \cdot 69,1 = 3542,0$$
kgf

$$S2 = \frac{w'}{2} \cdot 775 = 1449,25 \text{kgf}$$

19.9.9 Esforços na longarina

De acordo com os itens X.7.8.1 e X.7.8.2 observa-se que a longarina dianteira deve ser dimensionada conforme as cargas de rajadas e a longarina traseira conforme as cargas de manobras.

19.9.9.1 Longarina dianteira

A distribuição de esforços na longarina dianteira foi determinada pelo software VLM desenvolvido no CEA, levando como base o valor de carga devido à carga de rajada (P = 5225,4kgf) corrigida. Assim, pelo fato da empenagem ser do tipo V, é necessário corrigir a carga fazendo a divisão deste valor pelo cosseno do ângulo da mesma. A carga P passa a valer 6033,9kgf. A tabela abaixo fornece os valores de cortante e momento fletor máximo na longarina dianteira.

Estação	Força (kg	gf) Estação	Força(kgf)
1	0.075566	5 35	90.785
2	0.3906	36	93.723
3	0.94362	37	96.574
4	1.7329	38	99.332
5	2.7549	39	102
6	4.0049	40	104.57
7	5.4767	41	107.06
8	7.1633	42	109.46
9	9.0562	43	111.78
10	11.146	44	114.05
11	13.423	45	116.29
12	15.874	46	118.56
13	18.489	47	121
14	21.254	48	123.97
15	24.156	49	128.85
16	27.181	50	148.34
	17	30.316	
	18	33.545	
	19	36.856	
	20	40.234	
	21	43.666	
	22	47.137	
	23	50.636	
	24	54.149	
	25	57.665	
	26	61.172	
	27	64.659	
	28	68.117	
	29	71.536	
F	30	74.907	
ľ	31	78.222	
ľ	32	81.473	
ľ	33	84.655	
ľ	34	87.76	

Tabela 19.17 - Força na empenagem

Figura 19.7 – Figuras do software VLM

-0.2 -2.5

Dentež -	Força	Deres (les 6)	Developments (hat)	Cortante	Fletor
Posiçao	(kgf)	Peso (kgi)	Resultante (kgi)	(kgf)	(kgf.m)
2,56	0,01	-0,98	-0,98	-0,98	0,00
2,5088	0,39	-0,98	-0,59	-1,57	-0,03
2,4576	0,94	-0,98	-0,04	-1,61	0,00
2,4064	1,73	-0,98	0,75	-0,86	0,12
2,3552	2,75	-0,98	1,77	0,91	0,36
2,304	4,00	-0,98	3,02	3,93	0,77
2,2528	5,48	-0,98	4,49	8,42	1,38
2,2016	7,16	-0,98	6,18	14,60	2,21
2,1504	9,06	-0,98	8,07	22,67	3,31
2,0992	11,15	-0,98	10,16	32,84	4,68
2,048	13,42	-0,98	12,44	45,28	6,37
1,9968	15,87	-0,98	14,89	60,17	8,39
1,9456	18,49	-0,98	17,51	77,67	10,76
1,8944	21,25	-0,98	20,27	97,94	13,49
1,8432	24,16	-0,98	23,17	121,11	16,61
1,792	27,18	-0,98	26,20	147,31	20,12
1,7408	30,32	-0,98	29,33	176,64	24,03
1,6896	33,55	-0,98	32,56	209,20	28,34
1,6384	36,86	-0,98	35,87	245,07	33,06
1,5872	40,23	-0,98	39,25	284,32	38,18
1,536	43,67	-0,98	42,68	327,01	43,71
1,4848	47,14	-0,98	46,15	373,16	49,62
1,4336	50,64	-0,98	49,65	422,81	55,93
1,3824	54,15	-0,98	53,17	475,98	62,61
1,3312	57,67	-0,98	56,68	532,66	69,65
1,28	61,17	-0,98	60,19	592,85	77,04
1,2288	64,66	-0,98	63,68	656,52	84,76
1,1776	68,12	-0,98	67,13	723,65	92,80
1,1264	71,54	-0,98	70,55	794,21	101,14
1,0752	74,91	-0,98	73,92	868,13	109,76
1,024	78,22	-0,98	77,24	945,37	118,64
0,9728	81,47	-0,98	80,49	1025,86	127,75
0,9216	84,66	-0,98	83,67	1109,53	137,09
0,8704	87,76	-0,98	86,78	1196,30	146,62
0,8192	90,79	-0,98	89,80	1286,10	156,33

Tabela 19.18 - Cortante e fletor na empenagem

0,768	93,72	-0,98	92,74	1378,84	166,19
0,7168	96,57	-0,98	95,59	1474,43	176,19
0,6656	99,33	-0,98	98,35	1572,78	186,31
0,6144	102,00	-0,98	101,02	1673,80	196,54
0,5632	104,57	-0,98	103,59	1777,38	206,84
0,512	107,06	-0,98	106,08	1883,46	217,24
0,4608	109,46	-0,98	108,48	1991,93	227,71
0,4096	111,78	-0,98	110,80	2102,73	238,26
0,3584	114,05	-0,98	113,07	2215,80	248,93
0,3072	116,29	-0,98	115,31	2331,10	259,76
0,256	118,56	-0,98	117,58	2448,68	270,90
0,2048	121,00	-0,98	120,02	2568,69	282,66
0,1536	123,97	-0,98	122,99	2691,68	295,95
0,1024	128,85	-0,98	127,87	2819,55	314,24
0,0512	148,34	-0,98	147,36	2966,90	369,69

19.9.10 Cargas de apoio na empenagem

Necessita-se determinar quais são as cargas nos apoios da empenagem, para então determinar as cargas na fuselagem e fixações. Para tal, deve-se fazer o balanço de forças e momentos nos pontos de apoio da empenagem para cada caso de carregamento.

19.9.10.1 Condição de carregamento positivo simétrico

Tem-se que a carga simétrica positiva máxima atuante sobre a empenagem é de 761,6kgf. De maneira similar ao item 3.7.8.1, deve-se determinar as forças em cada longarina. A figura abaixo fornece a distribuição de forças ao longo da corda.

Figura 19.8 – Esquema da empenagem

$$S_1 = \frac{750 \cdot w}{2} \qquad \qquad S_2 = \frac{450 \cdot w}{2}$$

$$S_1 + S_2 = 761,6 kgf$$

A solução do sistema é:

w = 1,27 kgf/m

S1 = 476,0kgf

S2 = 285,6kgf

Por equilíbrio de forças:

 $R_{f} + R_{t} = -761,6 kgf$

Por equilíbrio de momentos:

 $0 = R_{\rm f}.240 + 650.R_{\rm t} + S_1.300 + S_2.1000$

Assim:

 $R_{f} = -162,6 kgf$

 $R_t = -599,0 kgf$

19.9.10.2 Condição de carregamento negativo simétrico

Para a condição de carregamento simétrico negativo máximo (P = -5749,0kgf), tem-se de forma similar ao item anterior:

S1 + S2 = -5749,0 w = -9,58kgf/m S1 = -3593,1kgf S2 = -2155,8kgf Rf = 1226,95kgfRt = 4522,0kgf

19.9.10.3 Cargas de torção

Devem ser analisadas também, de forma semelhante à asa, as tensões provocadas pelos esforços de torção sobre a empenagem. Os esforços de torção na empenagem são decorrentes exclusivamente da deflexão do profundor, devido ao fato do perfil utilizado na empenagem ser um perfil simétrico, ou seja, Cm nulo.

Primeiramente deve-se determinar o incremento de Cm devido à deflexão da superfície de comando. De acordo com o parágrafo 23.349 do regulamento FAR-PART 23, o incremento de Cm devido à atuação de uma superfície de comando pode ser dado simplesmente pela relação:

$$\Delta C_m = -0.01\delta$$

Onde δ é a deflexão da superfície de comando em graus, para a condição limite de operação. A velocidade limite é VD = 156,4m/s e a deflexão máxima nesta velocidade é de -5°.

Ectação	Posição	Ároa	٨Cm	Corda	ΔMomento	Momento
LStaçau	FUSIÇAU	Alea	Aom	Corua	Torção	de Torção
1	0,13	0,1744	-0,05	1,30	-169,84	-169,84
2	0,27	0,1730	-0,05	1,29	-166,95	-336,79
3	0,40	0,1716	-0,05	1,28	-164,12	-500,91
4	0,54	0,1702	-0,05	1,27	-161,33	-662,24
5	0,67	0,1689	-0,05	1,25	-158,59	-820,82
6	0,81	0,1675	-0,05	1,24	-155,89	-976,72
7	0,94	0,1662	-0,05	1,23	-153,24	-1129,96
8	1,08	0,1648	-0,05	1,22	-150,64	-1280,60
9	1,21	0,1635	-0,05	1,21	-148,08	-1428,68
10	1,35	0,1622	-0,05	1,20	-145,56	-1574,24
11	1,48	0,1609	-0,05	1,19	-143,09	-1717,33
12	1,62	0,1596	-0,05	1,18	-140,66	-1857,99
13	1,75	0,1583	-0,05	1,17	-138,27	-1996,25
14	1,89	0,1571	-0,05	1,16	-135,92	-2132,17
15	2,02	0,1558	-0,05	1,14	-133,61	-2265,78
16	2,16	0,1545	-0,05	1,13	-131,34	-2397,12
17	2,29	0,1533	-0,05	1,12	-129,11	-2526,22
18	2,43	0,1521	-0,05	1,11	-126,91	-2653,14
19	2,56	0,1508	-0,05	1,10	-124,76	-2777,89

Tabela 19.19 - Torção na empenagem

19.10 Cargas no trem de aterragem

As considerações apresentadas a seguir foram obtidas do regulamento FAR-PART 23 a respeito da determinação das cargas no trem de pouso da aeronave em projeto e servirão de base para o cálculo das cargas atuantes no trem de pouso.

- O peso da aeronave para o cálculo das cargas no trem de pouso deve ser o máximo de decolagem previsto no projeto (FAR-PART 23.473(a)).
- A velocidade vertical durante o pouso pode ser determinada pela seguinte equação, devendo ficar nos limites 2,13 e 3,05 m/s (FAR-PART 23.473 (d) e JAR-VLA 473(b)).

$$V_V = 0,61 \cdot \left(\frac{W}{S}\right)^{0.25}$$

- A sustentação da aeronave não deve exceder dois terços do seu valor máximo, e as reações no solo devem levar em consideração o alívio devido à sustentação (FAR-PART 23.473 (e)).
- A altura da queda da aeronave pode ser determinada pela seguinte equação, devendo estar entre 0,235 e 0,475m (FAR-PART 23.473 (d) / FAR-PART 23.725).

$$h = 0,0132 \cdot \sqrt{\frac{W}{S}}$$

• O fator de carga de inércia utilizado não pode ser menor que 2,67 e o fator de carga das reações no solo não pode ser menor que 2,0 (FAR-PART 23.473 (e)).

19.10.1 Fatores de carga para pouso

Será adotado como fator de carga das reações no solo ng = 2,0. Desta forma, o fator de carga de inércia que ainda atua no centro e gravidade da aeronave será:

Figura 19.9 – Dimensões do avião

19.10.2 Cargas no solo

19.10.2.1 Aterragem nivelada (três pontos) FAR-PART 23.479

Figura 19.10 - Cargas no trem de pouso do avião

Usar-se-á coeficiente de atrito igual a 0,25.

$$Vn = n_g \cdot W \cdot \frac{b}{d} = 386,9 \text{kgf}$$

$$Hn = k \cdot n \cdot W \cdot \frac{b}{d} = 96,7 kgf$$

$$Vm = 0, 5 \cdot n_g \cdot W \cdot \frac{a}{d} = 5416,5 \text{kgf}$$

$$Hm = 0, 5 \cdot n \cdot W \cdot \frac{a}{d} = 1354, 1 \text{kgf}$$

A inclinação das forças:

$$\Theta = \operatorname{arctg}(\frac{k \cdot n}{n_g}) = 0,24 \text{rad}$$

19.10.2.2 Aterragem nas rodas principais FAR-PART 23.479

Vn = Hn = 0

 $Vm = 0, 5 \cdot n_g \cdot W = 5610 kgf$

 $Hm = 0, 5 \cdot n \cdot W = 1402,5 kgf$

19.10.2.3 Aterragem com cauda baixa FAR-PART 23.481

Figura 19.12 – Aterragem com cauda baixa

Vn = Hn = Hm = 0

 $Vm = 0, 5 \cdot n_g \cdot W = 5610 kgf$

19.10.2.4 Aterragem numa roda principal FAR-PART 23.483

Figura 19.13 – Aterragem numa roda principal

 $Vm = n_g \cdot W = 11220 kgf$ $Hm = k \cdot n \cdot W = 2805 kgf$

19.10.2.5 Forças laterais FAR-PART 23.485

$$Sm' = \frac{1}{2} \cdot W = 1870 \text{kgf}$$

$$\operatorname{Sm}'' = \frac{1}{3} \cdot W = 1234,2 \operatorname{kgf}$$

Vm = 2487,1kgf

19.10.2.6 Forças na frenagem

As forças que atuam na aeronave no momento da aplicação dos freios são dadas por:

$$Vn = 1,33 \cdot W \cdot \frac{b}{d} + 2 \cdot H_m \cdot \frac{h}{d}$$

$$Vm = \frac{1}{2} \cdot 1,33 \cdot W \cdot \frac{a}{d} + 2 \cdot H_m \cdot \frac{h}{d}$$

 $Hm = 0.8 \cdot V_m$

Resolvendo para Vm, ter-se-á:

Vm = 171,5kgf

Vn = 171,5kgf

19.10.2.7 Condições suplementares da roda do nariz - FAR-PART 23.499

$$Vs = W \cdot \frac{b}{d} = 128,9 \text{kgf}$$

A) força para trás

 $Vn = 2,25 \cdot V_s = 290,17 kgf$

 $Dn = 0.80 \cdot V_s = 103.17 \text{kgf}$

B) força para frente

 $Vn = 2,25 \cdot V_s = 290,17 kgf$

 $Dn = 0.40 \cdot V_s = 51.58 \text{kgf}$

C) força lateral

 $Vn = 2,25 \cdot V_s = 290,17 kgf$

 $Dn = 0,70 \cdot V_s = 90,27 \text{kgf}$

19.10.3 Cargas no berço do motor

As cargas no motor deverão ser determinadas em conformidade com os requisitos apresentados nos parágrafos FAR-PART 23.361e FAR-PART 23.363, se resumindo em:

- Cargas verticais combinadas ao torque do motor
- Cargas de inércia lateral

19.10.3.1 Cargas Verticais de Inércia combinadas ao Torque do Motor

De acordo com o parágrafo FAR-PART 23.361, o berço do motor deve resistir a duas condições de carregamento:

 Torque máximo do motor correspondente ao regime de decolagem mais 75% das cargas verticais de inércia para o ponto de manobra do diagrama V x n (FAR-PART 23.361).

2) Torque médio limite do motor correspondente ao regime de potência máxima contínua mais as cargas verticais de inércia para o ponto de manobra do diagrama V x n (FAR-PART 23.61). Neste caso a potência deve ser multiplicada por um fator que depende do número de ciclos e de cilindros do motor. (FAR-PART 23.361).

19.10.3.2 Torque do Motor no regime de decolagem

Para o regime de decolagem o motor funciona no regime de torque máximo. Desta forma o torque de decolagem do motor será o torque máximo vezes a relação de transmissão do redutor igual a 1,63.

T = 183,64kgf.m

19.10.3.3 Carga Vertical de Inércia para o ponto de manobra do Diagrama V x n:

Para o ponto de manobra do diagrama V x n, tem-se que os fatores de carga limites são +3,41 e -1,52. A soma de todos os pesos estimados para os componentes que o berço do motor deverá suportar corresponde ao valor obtido no cálculo do peso do motor instalado do capítulo de refinamento do peso da aeronave.

P(+) = 2231,0 kgf

P(-) = -994,4 kgf

O momento em relação à parede de fogo da aeronave é igual a:

M = 0.5.2231, 0 = 1115, 5kgf.m

Agora considerando 75% das cargas verticais de inércia:

P(+) = 1673,27kgf

P(-) = -745,8 kgf

O momento em relação à parede de fogo da aeronave é igual a:

M = 0,5.1673,27 = 836,63kgf.m

19.10.3.4 Torque limite do motor

O parágrafo FAR-PART 23.361 (b) determina que para motores de quatro tempos e quatro cilindros o fator multiplicativo é 2. Desta forma:

T = 367,28 kgf.m

19.10.3.5 Cargas laterais no berço do motor

De acordo com o parágrafo FAR-PART 23.363, o berço do motor deve resistir a uma carga de inércia lateral, com fator de carga de no mínimo 1,33, independentemente de outras condições de operação. Para o presente caso, então, considerar-se-á o fator mínimo como se segue:

 $P_{lateral} = 1,33.654,2 = 870,0 kgf$

O momento em relação à parede de fogo da aeronave é igual a:

M = 0.5.870 = 435.0kgf.m

19.11 Cargas na fuselagem

Para o cálculo estrutural da fuselagem considera-se que a mesma está apoiada nos pontos de fixação da asa na fuselagem. As cargas são divididas nas cavernas de fixação da asa em duas parcelas, uma anterior e outra posterior.

19.11.1 Cargas na porção anterior da fuselagem

As cargas presentes na seção anterior da fuselagem se resumem em:

- 1. Cargas verticais de inércia
- 2. Cargas transmitidas pelo trem de pouco auxiliar

19.11.2 Cargas verticais de inércia

As cargas de inércia na fuselagem foram determinadas considerando o peso de cada componente fixado na posição da fuselagem; sua posição relativa à origem e o fator de carga máximo da aeronave. As principais massas contidas na parte anterior da fuselagem são:

Componente	Peso	Dosioão	Braço de Alavanca
Componente	(kgf)	1 051çau	(kgf.m)
Piloto	79.3787	2.835	225.0385146
Co-Piloto	79.3787	2.835	225.0385146
Passageiro 1	79.3787	4.6165	366.4516058
Passageiro 2	79.3787	4.6165	366.4516058
Passageiro 3	79.3787	5.8695	465.9130728
Passageiro 4	79.3787	5.8695	465.9130728
Acabamento	166.198	5.9623	990.9220269
Avônica	19.3782	0.9	17.44033942
Hidráulico	3.74	5.9623	22.299002
Controles	62.832	5.9623	374.6232336
Parte Elétrica	47.1736	0.9	42.45624583
Trem de Pouso (nariz)	6.50196	1.9	12.35371902

Tabela 19.20 - Cargas de inérci

19.11.3 Cargas transmitidas pelo trem de pouso auxiliar

O trem de pouso auxiliar fica localizado a frente da posição de fixação da asa e apresenta as cargas máximas:

Componente vertical: Vn = 368,8kgf

Componente horizontal: Hn = 96,7kgf

Componente lateral: Vl = 290,17kgf

Como o as cargas acima são consideradas atuando no ponto de contato entre a roda e o solo e o trem de pouso auxiliar apresenta um comprimento de 1,1m, na fixação do trem de pouso na fuselagem aparecem esforços de reação cortantes já calculados e dois momentos relevantes, M'y = 405,6kgf.m e M'x = 319,1kgf.m.

19.11.4 Cargas na porção posterior da fuselagem

As cargas presentes na seção anterior da fuselagem se resumem a:

- 1. Cargas verticais de inércia
- 2. Cargas transmitidas pelo trem de pouso principal
- 3. Cargas devido a empenagem
- 4. Cargas transmitidas pelo torque do motor

19.11.5 Cargas verticais de inércia

As cargas verticais de inércia foram calculadas para os seguintes componentes da aeronave.

Componente	Dece (legf)	Dogiaão	Braço de Alavanca		
Componente	Peso (kgi)	rosiçao	(kgf.m)		
Passageiro 5	79.3787	7.0825	562.1993931		
Passageiro 6	79.3787	7.0825	562.1993931		
Bagagem P1	18.1437	8.5795	155.6638295		
Bagagem P2	18.1437	8.5795	155.6638295		
Bagagem P3	18.1437	8.5795	155.6638295		
Bagagem P4	18.1437	8.5795	155.6638295		
Bagagem P5	18.1437	8.5795	155.6638295		
Bagagem P6	18.1437	8.5795	155.6638295		
Bagagem Piloto	13.6078	8.5795	116.7478722		
Bagagem Co-Piloto	13.6078	8.5795	116.7478722		
Ar Condicionado	94.5833	9	851.2499483		
Empenagem	49.3275	12.25	604.2614598		
Motor instalado	654.262	10.5	6869.747162		
Trem de Pouso (principal)	71.1558	7.75	551.4577536		

Tabela 19.21 - Cargas de inércia

19.11.5.1 Cargas transmitidas pelo torque do motor

As cargas devido ao torque do motor já foram calculadas no item X.4.5, e devem ser aplicadas conforme descrito neste item.

19.11.5.2 Cargas devido à empenagem

As cargas na empenagem já foram calculadas.

19.11.5.3 Cargas transmitidas pelo trem de pouso principal

Componente vertical: Vm = 11220kgf

Componente horizontal: Hm = 2805kgf

Componente lateral: Vl = 2487, 1kgf

Como o as cargas acima são consideradas atuando no ponto de contato entre a roda e o solo e o trem de pouso auxiliar apresenta um comprimento de 0,8m, na fixação do trem de pouso na fuselagem aparecem esforços de reação cortantes já calculados e dois momentos relevantes, M'y = 2244kgf.m e M'x = 1989,68kgf.m.

19.12 Cargas nos Comandos

19.12.1 Cargas no sistema de rolamento

O regulamento FAR-PART 23.349 prevê no parágrafo ((a)2) que para um avião de categoria utilitária, o carregamento para fins de cálculo deve ser considerado como 100% em uma das asas e 75% na outra. Logo, deve-se estimar o carregamento para a condição mais crítica, ou seja a de 100%.

Pelo parágrafo 23.349 b, tem-se que para fins de projeto, a carga deve ser calculada para 2/3 do fator de carga, bem como para a deflexão máxima dos ailerons. Para esse cálculo utilizou-se o Apêndice A do FAR 23.

Figura 19.14 - Apêndice A do FAR 23

Para o avião em projeto:

$$\frac{W}{S} = 30,64lbf / ft^2$$

O fator de carga máximo reduzido a dois terços vale 2,7. Desta forma:

$$2,7 \cdot 30,64 = 82,72 kg / m^2$$

Pela figura acima, tem-se:

$$\bar{w} = 0,466 \cdot n_1 \cdot \frac{W}{S} = 38,55 lbf / ft^2$$

Sendo S_a a área do aileron, e:

$$S_a = 4,23 ft^2$$
Portanto a carga no aileron será de:

 $P_a = 4,23 . 38,55 = 163,06lbf = 73,96kgf$

No parágrafo FAR-PART 23.395 (a), tem-se que a carga limite para o dimensionamento deste sistema deve ser 125% da carga calculada, logo:

 $P_a = 92,45 \text{kgf}$

Como a distribuição de pressão é triangular, tem-se que a posição da carga no aileron é no baricentro (1/3), como pode ser visto a seguir:

Figura 19.15 – Carga no aileron

Como o sistema de acionamento dos ailerons ainda não foi concluído, torna-se impossível o cálculo das forças no comando.

19.12.2 Cargas no sistema de arfagem

As cargas no profundor devem ser analisadas a principio levando-se em consideração os casos de carregamento de manobra e rajada. A seguinte figura pode ser utilizada para o cálculo do carregamento:

Figura 19.16 - Apêndice C do FAR 23

Considerando fator de carga limite n=4,05, e a relação W/S= 30,64lbf/ft²:

$$w = 4,8 \cdot 0,534 \cdot \left(n_1 \cdot \frac{W}{S}\right) = 4,8 \cdot 0,534 \cdot 4,05 \cdot 30,64 = 318,07lbf / ft^2$$

Convertendo para o Sistema Internacional:

 $w = 1552,9 kgf/m^2$

Como a empenagem possui uma área de 6,14m²:

$$P = w \cdot S_{emp} = 9534,8 kgf$$

Desta forma o dimensionamento do profundor e de seus sistemas de comando, quanto às cargas aerodinâmicas, deverá ser feito em relação às cargas de manobra na empenagem horizontal.

A figura a seguir apresenta a distribuição de carga na empenagem horizontal proposta pelo requisito FAR.

Figura 19.17 – Carga na empenagem horizontal

O valor da carga no profundor será proporcional à área da distribuição de carga sobre o mesmo logo, tem-se que:

$$P_{prof} = P_{EH} \cdot \frac{c''}{c' + c''}$$

Sendo a carga máxima na empenagem horizontal igual a 9534,8kgf; a relação entre a corda do profundor e a corda da empenagem horizontal igual a 0,375 e a relação entre a corda do estabilizador e a da empenagem horizontal igual a 0,625, tem-se que:

$$P_{prof} = 9534,8 \cdot \frac{0,375}{0,625 + 0,375} = 3575,55 kgf$$

O parágrafo FAR-PART 23.395 (a) prevê que o dimensionamento dos sistemas de comando de ser feito com uma carga igual a 125% da carga limite calculada para as superfícies de comando. Logo, a carga para dimensionamento deste sistema será de:

$$P_{prof} = 3575,55 \cdot 1,25 = 4469,43 kgf$$

Como a distribuição de carga na empenagem é triangular a aplicação da carga deve ser feita no baricentro (1/3). A figura a seguir mostra a posição da carga atuante no profundor.

Figura 19.18 - Carga no baricentro da empenagem

Como a corda média aerodinâmica da empenagem horizontal é de 1,20 m, tem-se que a corda média aerodinâmica do profundor é de 0,45m. Conseqüentemente a localização da carga P encontra-se a 0,15m da articulação.

Como o sistema de acionamento do profundor ainda não foi concluído, torna-se impossível o cálculo das forças no comando.

19.12.3 Cargas no sistema de guinada

A seguinte figura do Apêndice A do FAR23 pode ser utilizada para o cálculo do carregamento na empenagem vertical:

Figura 19.19 - Apêndice A do FAR23

Como a área da empenagem em V é uma só, é desnecessário fazer calcular novamente para este caso, já que as cargas são as mesmas.

20 Relatório Descritivo

20.1 Tipo:

Aeronave da classe commuter bimotora, certificado conforme FAR parte 23.

20.2 Versões:

Duas versões de fábrica. Uma versão de seis lugares e outra executiva para quatro lugares.

20.3 Asas:

Asa baixa, forma em planta trapezoidal, estrutura *cantilever*, aerofólio LS-417 na raiz, e LS-421 na ponta, sem torção geométrica. Diedro de 2º, enflechamento de 5º, incidência nula em toda asa. Longarina fabricada em material composto. Revestimento fabricado em fibra de vidro. Flapes do tipo *plain*.

20.4 Fuselagem:

Fuselagem semi-monocoque fabricada em material composto.

20.5 Cauda:

Empenagem do tipo V, estrutura *cantilever*, forma em planta trapezoidal. Este formato de cauda melhora o desempenho da aeronave, uma vez que o arrasto é menor do que empenagens convencionais.

20.6 Trens de pouso:

Trem de pouso do tipo triciclo retrátil. Trem principal na asa, amortecedores hidráulicos, freio a disco. Esta configuração permite pouso em diversas pistas, mesmo em situações mais adversas com amortecimento suave.

20.7 Grupo moto propulsor:

Dois motores Centurion 4.0 de 350HP com rotação de 2300rpm e ciclo diesel. Tanque do tipo integral nas asas com capacidade de 910 litros. Através de um sistema de redução foi eliminada a possibilidade de haver torque desalinhante causado pela perda de um dos motores. Motor de alta tecnologia englobando o que há de mais moderno na indústria de motores aeronáuticos. Baixo nível de ruído, o que não atrapalha a comunicação dos passageiros e baixo consumo que permite um custo operacional reduzido.

20.8 Acomodações:

Seis assentos dispostos em duas fileiras separados por corredor. Compartimento de bagagem traseiro para 10kg por passageiro. Lavabo e banheiro de alto padrão. Na versão executiva, quatro poltronas de luxo dispostas de frente pra outra separadas por corredor. Espaço amplo com conforto para o passageiro. Perfeito para executivos exigentes que querem voar com segurança e estilo. Acabamento requintado, fazendo da viagem um momento mais relaxante e agradável.

20.9 Equipamentos:

Sistema integrado G1000 da Garmin[®]. Instrumentos para VFR e IFR. Possi duas telas que agrupam todas as funções de navegação e de vôo, proporcionando uma limpeza do painel facilitando o trabalho dos pilotos.

20.10 Características Técnicas:

Característica	Valor	Característica	Valor
Comprimento	13m	Alongamento	10.24
Envergadura	16m	Velocidade máx. cruzeiro	450km/h
Largura da fuselagem	1.62m	Distância de decolagem	904.4m
Comprimento da fuselagem	13m	Distância de pouso	880.5m
Área alar	25m ²	Razão de subida	1200ft/min
Área do aileron	0.625 m ²	Razão de subida c/ um motor	530ft/min
Área do flap	0.859 m^2	Teto de serviço	25000ft
Área da superfície móveldaempenagem	0.924 m ²	Relação peso - potência	5.5kg/hp
Alcance	3000km	Altura da cabine	1.606m
Área da empenagem	6.16 m ²	Largura da cabine	1.452m
Corda na ponta	1.26m	Alcance	3000km
Corda na raiz	1.8m	Número de motores	2
Diedro	2°	Potência do motor	350 hp
Incidência Ponta e raiz	0°	Comprimento da cabine c/4 assageiros	3.632m
Peso vazio	2053.53kg	Comprimento da cabine c/6 assageiros	4.219m

Tabela 20.1 - Características técnicas

Peso máx. decolagem	3746.9kg
Carga paga máx	585.13kg
Peso de combustível	728.35kg
Carga alar	149.6kg/m ²

Figura 20.1 - Vista isométrica da Aeronave – Aethron

Figura 20.2 - Três Vistas e vista isométrica da Aeronave – Aethron

Figura 20.3 - Empenagem em "V" e grupo moto-propulsor completo

Referências Bibliográficas

[1] ABBOT, I. H., D., A. E. von, "Theory of Wing Sections", McGraw-Hill Book Company, 1949.

[2] ANDERSON, J.D., "Fundamentals of Aerodynamics", New York, EUA, 1991

[3] BARROS, C.P., "Uma metodologia para o Desenvolvimento de Projeto de Aeronaves Leves Subsônicas", E.E. UFMG, Belo Horizonte, 2001.

[4] FAR – Part 23, "Airworthsiness standards: normal, utility, acrobatic and commuter", 1999

[5] HOERNER, S.F., "Fluid Dynamic Drag", Brick Town, 1965.

[6] ISCOLD, P.H., "Introdução às Cargas nas Aeronaves", CEA-UFMG, 2001.

[7] MCCORMICK, B.W., "Aerodynamics, aeronautics and Flight Mechanics", EUA, 1979.

[8] PAZMANY, L., "Light Airplane Design", San Diego, EUA, 1963.

[9] PULLIN, D., "Apostila de Aerodinâmica do Avião", UFMG, Belo Horizonte, 1976.

[10] RAYMER, D.P., "Aircraft Design – a conceptual approach", Reston, EUA, 1999.

[11] ROSKAN, J. "Airplane Design: Preliminary Sizing of Airplanes", Outtowo, Kansas: Roskam Aviation and Engineering Corporation, 1985.

[12] PINTO, R.L.U.F., "Estabilidade e Controle de Aviões", E. E. UFMG, Belo Horizonte, 2006.

5	6	7	8	9

5		6	7	•		8	1	9
		-				•		•

5	6	7	8	9

	10		11			12		
								А
				4		2851	-	В
1300	0				(®) 	<u> </u>	-	C
	Č							D
				Z				E
						2		F
								G
	PROJ	ETO DE AERO	DNAVES II TAS	FORMATO:	DATA: 05/12/2006 PROJETADO POR: Rubens	DESENHADO POR Rubens VISTO POR: Paulo Iscol CEA	: d REVISÃO:	Н
/	10	1:50	11	A1	CONJUN	ITO FINAL	. 0	

_	

7 \

° [⊬] 10	11	12

				DATA:	DESENHADO POR:	
	PF	ROJETO DE AERONAVES II		05/12/2006	Rubens	
				PROJETADO POR:	VISTO POR:	
				Rubens	Paulo Iscold	
		TREM DE POUSO		CEA UFMG		
		ESCALAS:	FORMATO:	DESENHO N°:		REVISÃO:
		1:5	A1	PRIN	CIPAL	0
7	<u> 10 </u>	11			12	,

5		6	7	8	9

	PROJETO DE AERONAVES II				/12/2006	DESENHADO POR: Rubens		
				<i>R</i>	lubens	Paulo Iscold	<u>٦</u>	┠
	LONGARINA PRINCIPAL				+	CEA UFMG	J	
	ESCALAS:		FORMATO:	DESEN	NHO N°:		REVISÃO:	
	1:25		A1		LONGA	RINA	0	
. 10	i	11	:	+		12		I