SUMÁRIO

1	INT	RODUÇÃO	1
	1.1	Missão Típica	2
	1.2	Especificações	4
2	PRO	DJETO CONCEITUAL	5
	2.1	Tabela Comparativa	5
	2.2	Gráficos de Barra	14
	2.3	Gráficos Paramétricos	19
	2.4	Fichas Técnicas	22
	2.5	Lista de Prioridades	37
	2.5.	1 Segurança operacional em vôo: Desempenho / Manobrabilidade	37
	2.5.	2 Manutenção: Facilidade de manutenção e segurança operacional no	solo
		37	
	2.5.	3 Custo de Fabricação / Simplicidade Construtiva	37
	2.5.	4 Ergonomia	37
	2.5.	5 Estética	38
3	DEI	FINIÇÃO DA CONFIGURAÇÃO DA AERONAVE	39
	3.1	Estimativa de Peso	39
	3.1.	1 Cálculos para estimativa de peso	39
	3.1.	2 Missão 1	45
	3.1.	3 Missão 2	48
	3.2	Diagrama de Restrição W/P x W/S	50
	3.2.	1 Decolagem	50
	3.2.	2 Pouso	51
	3.2.	3 Velocidade de Cruzeiro	52
	3.2.	4 Razão de Subida	53
	3.2.	5 Tempo de Subida	58
	3.2.	6 Diagrama de Restrição	61
	3.2.	7 Parâmetros Aerodinâmicos:	62
	3.2.	8 Escolha do grupo moto-propulsor:	65
4	PRO	DJETO PRELIMINAR	66
	4.1	Configuração Interna	66

	4.2	Configuração Externa	70
	4.2.	1 Asa	70
	4.2.2	2 Cauda	73
	4.2.3	3 Trem de pouso	75
	4.3	Três Vistas	77
	4.4	Desenho 3D	79
5	REF	FINAMENTO DE PESO E PASSEIO DO C.G	80
	5.1	Refinamento do Peso da Aeronave	80
	5.1.1	1 Asa	81
	5.1.2	2 Fuselagem	82
	5.1.3	3 Empenagem Horizontal	82
	5.1.4	4 Empenagem Vertical	83
	5.1.5	5 Trem De Pouso	83
	5.1.0	6 Controles	83
	5.2	Passeio do Centro de Gravidade	84
	5.2.	Primeira tentativa de Passeio do CG	86
	5.2.2	2 Segunda tentativa de Passeio do CG	87
	5.2.3	3 Terceira e ultima tentativa de Passeio do CG	88
	5.3	Tabela de Pesos e Momentos Estáticos	89
6	CAF	RGAS	91
7	EVO	DLUÇÃO DOS DESENHOS	93
8	REL	ATÓRIO DESCRITIVO	100
	8.1	Тіро:	100
	8.2	Versões:	100
	8.3	Asas:	100
	8.4	Fuselagem:	100
	8.5	Cauda:	100
	8.6	Trens de pouso:	101
	8.7	Grupo Moto-propulsor:	101
	8.8	Acomodações:	101
	8.9	Equipamentos:	101
	8.10	Características Técnicas:	101

9	AEROD	INÂMICA	104
	9.1 Dao	dos Iniciais	104
	9.1.1	Determinação da Faixa de Velocidades para Cálculo	104
	9.1.2	Número de Reynolds ao Longo da Envergadura	104
	9.2 Coe	eficientes de Sustentação	105
	9.2.1	C _L da Aeronave em Vôo Equilibrado	105
	9.2.2	Coeficiente de Momento Aerodinâmico da Aeronave	106
	9.2.3	Determinação do Centro Aerodinâmico da Aeronave	108
	9.2.4	Coeficiente de Sustentação da Empenagem Horizontal em Vôo	
	Equilibra	ado	109
	9.2.5	Coeficiente de Sustentação do Conjunto Asa-Fuselagem	109
	9.2.6	Variação do Coeficiente de Sustentação da Asa em Relação ao A	Àngulo
	de Ataqu	1e	110
	9.2.7	Ângulo de Ataque da Aeronave	111
	9.2.8	Ângulo de Ataque da Asa	116
	9.3 Def	flexões do Profundor	116
	9.3.1	Efeito de Downwash da Asa sobre a Empenagem Horizontal	116
	9.3.2	Variação do Coeficiente de Sustentação da Empenagem Horizon	ntal com
	a Variaç	ão do Ângulo de Ataque	118
	9.3.3	Variação do Coeficiente de Sustentação da Empenagem Horizon	ntal com
	a Variaç	ão da Deflexão do Profundor	119
	9.3.4	Incidência da Empenagem Horizontal	121
	9.3.5	Deflexões do Profundor	121
	9.4 Coe	eficientes de Arrasto	122
	9.4.1	Área de Referência da Asa	122
	9.4.2	Coeficiente de Arrasto Parasita da Asa	122
	9.4.3	Acréscimo de Arrasto Devido às Frestas do Aileron	124
	9.4.4	Coeficiente de Arrasto Induzido da Asa	124
	9.4.5	Coeficiente de Arrasto Parasita da Fuselagem	125
	9.4.6	Coeficiente de Arrasto Induzido da Fuselagem	127
	9.4.7	Acréscimo de Arrasto Devido ao Fluxo da Hélice	128
	9.4.8	Coeficientes de Arrasto Parasita da Empenagem Horizontal	128

9.4.9		9	Coeficientes de Arrasto Induzido da Empenagem Horizontal	129
	9.4.	10	Coeficientes de Arrasto da Empenagem Vertical	130
	9.4.	11	Acréscimos dos Coeficientes de Arrasto Devido aos Efeitos de	
	Inte	rferêr	ncia	131
	9.4.	12	Arrasto do Trem de Pouso Principal	132
	9.4.	13	Arrasto Devido a Coleta de Ar	134
	9.4.	14	Coeficientes da Aeronave Completa	135
9	.5	Coe	ficientes Calculados	136
9	.6	Raza	ão de Planeio e Velocidade de Afundamento	136
9	.7	Grát	ficos	138
10	D	ESEI	MPENHO	141
1	0.1	Dad	os De Entrada	141
	10.1	.1	Dados da Aeronave	141
	10.1	.2	Dados da Hélice	141
	10.1	.3	Dados do Motor	143
	10.1	.4	Dados Extras	144
	10.1	.5	Polar de Arrasto da Aeronave	144
1	0.2	Intro	odução	145
	10.2	2.1	Condições de vôo propostas	146
1	0.3	Cálc	culo da Potência Requerida (PREQ)	146
1	0.4	Dete	erminação da Razão de Avanço da Hélice (J):	147
1	0.5	Dete	erminação do Rendimento da Hélice (ηP):	. 147
1	0.6	Dete	erminação da Potência Disponível (Pdis):	. 148
	10.6	5.1	Curva de "Potência x Velocidade"	. 149
	10.6	5.2	Resultados obtidos	150
1	0.7	Dete	erminação da Razão de Subida ("Vv")	. 151
	10.7	7.1	Resultados obtidos	. 153
1	0.8	Dete	erminação da Autonomia da ("E" Endurance)	. 153
	10.8	8.1	Resultados obtidos	155
1	0.9	Cálc	culo do Alcance – R (Range):	. 155
	10.9	0.1	Resultados obtidos	. 156
1	0.10	С	álculo da Distância da Corrida de Pouso	. 157

10.10.1	Cálculo da Distância de Planeio	158
10.10.2	Calculo da Distância de Desaceleração em Vôo	158
10.10.3	Cálculo da Distância de Desaceleração no Solo	159
10.10.4	Cálculo da Distância de Desaceleração Total	159
10.11	Resultados Gerais	159
10.12	Conclusão	160
11 ESTA	ABILIDADE	161
11.1 Co	ntrole Direcional Estático	161
11.1.1	Determinação da faixa de velocidades para cálculo	161
11.1.2	Cálculo da variação do coeficiente de sustentação da empenager	n vertical
com a v	ariação do ângulo de ataque da mesma	161
11.1.3	Cálculo da variação do coeficiente de sustentação da empenager	n vertical
com a v	ariação da deflexão do leme	164
11.1.4	Cálculo da variação do coeficiente de momento na articulação d	o leme
com a v	ariação do ângulo de ataque da empenagem	167
11.1.5	Cálculo da variação do coeficiente de momento na articulação d	o leme
com a v	ariação do de deflexão do leme	169
11.1.6	Cálculo da variação do momento de guinada da aeronave com a	variação
do ângu	lo de guinada da mesma	172
11.1.7	Cálculo das Características de Estabilidade Controle Direcionais	s 176
11.1.8	Margem de estabilidade direcional pedal fixo	176
11.1.9	Margem de estabilidade direcional pedal livre	177
11.1.10	Ângulo de flutuação do leme	177
11.1.11	Força no pedal para manter vôo glissado	178
11.2 Co	ntrole Longitudinal Estático	180
11.2.1	Parte I - Definições Geométricas	180
11.2.2	Corpo Equivalente de Revolução (CER)	185
11.2.3	Parte II – Características de Estabilidade	186
11.2.4	Cálculo dos Pontos Neutros	187
11.2.5	Parâmetro de Densidade Longitudinal	191
11.2.6	Ponto de Manobra Manche Fixo (h _m)	192
11.2.7	Pouso de Pista	193

11.2	2.8	Pouso três pontos	194
11.2	2.9	Ponto de Manobra Manche Livre (h _m ')	194
11.2	2.10	Margens Estáticas de Estabilidade	199
11.2	2.11	Margens de Manobra	200
11.2	2.12	Deflexão do Profundor para Vôo Equilibrado	201
11.2	2.13	Força no Manche para vôo Equilibrado	207
11.2	2.14	Variação da deflexão do manche por "g" para realizar manobra	210
11.2	2.15	Normalização da Força no manche em relação ao fator de carga (n-1)
		211	
11.2	2.16	Comentários	213
12 C	CÁLC	ULO DE CARGAS	215
12.1	Dete	erminação do Envelope de Vôo	215
12.1	1.1	Definição das Velocidades	215
12.1	1.2	Velocidade de Cruzeiro (VC)	215
12.1	1.3	Velocidade Nunca Excedida em Mergulho (VD)	216
12.1	1.4	Velocidade de Manobra	216
12.1	1.5	Velocidade Máxima de Operação com Flapes	217
12.2	Defi	inição dos Fatores de Carga	218
12.2	2.1	Fatores de Carga de Manobra	218
12.2	2.2	Fatores de Carga de Rajada	218
12.3	Cur	vas de Vôo com Coeficiente de Sustentação Máximo	219
12.4	Diag	grama V-n	220
12.5	Cálo	culos de Cargas na Asa	221
12.5	5.1	Cargas Aerodinâmicas	221
12.6	Carg	gas no Trem de Aterragem	227
12.6	5.1	Fatores de Carga para Pouso	228
12.6	5.2	Cargas no Solo	228
12.7	Cálo	culo de Cargas nas Empenagens	235
12.7	7.1	Cargas na Empenagem Horizontal	235
12.7	7.2	Cargas na Empenagem Vertical	255
12.8	Carg	gas no Berço do Motor	258
12.8	8.1	Cargas Verticais Combinadas ao Torque do Motor	259

12.	8.2	Cargas Laterais no Berço do Motor	. 263
12.9	Carg	gas na Fuselagem	. 264
12.	9.1	Cargas na porção anterior da fuselagem	. 264
12.	9.2	Cargas na Porção Posterior da Fuselagem	. 266
12.10	С	argas nos Comandos	. 272
12.	10.1	Cargas no Sistema de Comando do Profundor	. 272
12.	10.2	Cargas no Sistema de Comando do Leme de Direção	. 275
12.	10.3	Cargas no Sistema de Rolamento	. 277
13 I	DIME	NSIONAMENTO	. 280
13.1	Dim	nensionamento da Longarina Principal da Asa	. 280
13.	1.1	Verificação das Margens de Segurança da Alma contra Flambagem:	
Apl	licabil	lidade do Método ao Presente Projeto:	. 281
13.	1.2	Determinação da Tensão de Cisalhamento Última da Alma	. 282
13.	1.3	Verificação da Máxima Área entre Reforçadores e dos Esforços	
Coi	mbina	dos	. 283
13.	1.4	Seleção do reforçador	. 284
13.	1.5	Margens de segurança da longarina contra falha por momento fletor	. 286
13.	1.6	Margens de segurança da longarina contra falha por cisalhamento	
(est	forço	cortante)	. 288
13.	1.7	Determinação da distância entre rebites na linha de união mesas-alma	a289
13.2	ond	e: D é o diâmetro do rebite; D = $1/8$ "	. 290
13.3	DIM	IENSIONAMENTO DA FUSELAGEM ANTERIOR: TRELIÇA	. 291
13.	3.1	Análise: Cargas transmitidas pela asa com fator de carga de 4,9 g	. 292
13.4	Dim	nensionamento da Fuselagem Posterior: Cone de Cauda	. 293
13.4	4.1	Esforços de flexão	. 294
13.4	4.2	Esforços de cisalhamento	. 297
13.4	4.3	Esforços de torção	. 298
13.5	Dim	nensionamento do Trem de Pouso	. 298
13.	5.1	Sistema de Trem de Pouso – Triquilha	. 299
13.	5.2	Tensão de Flexão	. 300
13.6	Dim	nensionamento do Comando de Aileron	. 307
13.7	Dim	nensionamento do Suporte Ssa-Fuselagem	. 313

14	INSTRUMENTAÇÃO	315
14.1	Indicador de Velocidade	315
14.2	2 Horizonte Artificial	315
14.3	3 Altímetro	316
14.4	Turn & Bank	317
14.5	Giroscópio	317
14.6	6 Medidor de Velocidade Vertical	318
14.7	Relógio e Medidor de Temperatura do Ar Externo	318
14.8	Medidor de Combustível	319
14.9	Pressão de Combustível	319
14.1	0 Pressão e Temperatura do Òleo	320
14.1	1 Voltímetro e Amperímetro	320
14.1	2 VOR	321
14.1	3 Tacômetro	321
14.1	4 Transponder	322
14.1	5 GPS	322
14.1	6 Tubo de Pitot	323
14.1	7 Disposição dos Instrumentos	324
15	NOVOS DADOS	327
16	DESENHOS TÉCNICOS	328
17	REFERÊNCIAS BIBLIOGRÁFICAS	342

1 INTRODUÇÃO

A execução desse trabalho tem como objetivo o projeto de uma aeronave do tipo Treinador Civil Multifuncional com a opção de trem de pouso triciclo ou convencional.

O projeto da aeronave será dividido em duas fases, a primeira inclui requisitos, projeto conceitual e projeto preliminar, os quais serão desenvolvidos nesse trabalho. A segunda fase consistirá no projeto detalhado da aeronave dessa primeira fase.

Na primeira fase serão apresentadas as fichas técnicas de aeronaves que se assemelham com o objetivo do projeto e em seguida será esboçada uma tabela comparativa que inclui essas aeronaves e mais algumas. Além disso, serão também apresentados gráficos para melhor visualização da comparação.

Toda a primeira fase do projeto será desenvolvida utilizando-se a metodologia de projeto do professor Cláudio Barros, Dr.

Na segunda fase do projeto serão apresentados os cálculos de aerodinâmica, desempenho, estabilidade e controle, os cálculos de cargas e o dimensionamento estrutural. Além disso, serão feitos também os desenhos técnicos de conjunto da aeronave, desenhos técnicos de fabricação de duas cavernas (parede de fogo e de uma das cavernas próximas à longarina principal da asa), de um nervura da asa (incluindo superfícies de comando), da longarina principal da asa, de um sistema de comando completo, e de uma das empenagens. No final do será também apresentado um relatório descritivo completo da aeronave.

1.1 Missão Típica

O treinador **BRATI-01** deverá cumprir duas missões típicas diferentes, com o objetivo de melhor atender às necessidades do cliente, tais missões são apresentadas a seguir na Fig. 1:

Missões Típicas 2

FIGURA 1.1.1 – Missões Típicas da Aeronave BRATI-01

Missão 1

- 1- Aquecimento
- 2- Táxi
- 3- Decolagem
- 4- Subida para 3000 ft
- 5- Manobras
- 6- Subida 3000ft a 7000ft
- 7- Manobras
- 8- Descida para 10000
- 9- Manobras trafegas
- 10- Descida
- 11- Pouso

Missão 2

- 1- Aquecimento
- 2- Táxi
- 3- Decolagem
- 4- Subida para 10000 ft
- 5- Cruzeiro
- 6- Descida
- 7- Pouso

1.2 Especificações

Depois da missão típica necessita-se também, conhecer as especificações de projeto para dar início a esse. Tais especificações estão relacionadas a seguir e foram determinadas pelo professor Paulo Iscold, como requisitos de projeto.

Treinador Civil

- Bases de certificação (VFR-RBHA 103 / TFR RBHA 23)
- MTOW \leq 750 kg
- Velocidade de estol \leq 45 Kts
- Velocidade máxima nivelada ≥ 200 Km/h e ≤ 300 Km/h
- Distancia pouso / decolagem para MTOW ASL
- Alcance máximo para 10000 ft \ge 800 Km
- Equipamento

VFR

IFR (opcional)

FLT

Rádio mais transponder

Luzes navegação mais farol

Para quedas balístico

• Características

Versão triciclo / convencional

Baixo consumo de combustível

Qualidade de vôo

Estética

Segurança (passiva / ativa)

Homologação RBHA 23 / 103

2 PROJETO CONCEITUAL

2.1 Tabela Comparativa

A Tabela Comparativa encontra-se nas páginas seguintes. Os dados da mesma foram retirados das referências [V e VIII]

			CONFIGURAÇÃO				
English	Company	Model	Wing	Landing gear		Seats	
			ŭ	00			
				TREM DE	FORMA EM		
DESC.	FABRICANTE	MODELO	ASA	POUSO	PLANTA	Assentos	
UNID.			71071			Unid.	
1	AFROMOT	AMT 600	Baixa	Triciclo	Trapezoidal	2 lado a lado	
2	NEIVA	P-56C	Alta	Convencional	Retangular	2 tandem	
- 3	STEARMAN	PT-17-13D	Biplano	Convencional	Retangular	2 tandem	
4	CESSNA	C 150.1	Alta	Triciclo	Retangular	2 lado a lado	
5	CESSNA	A 152	Alta	Triciclo	Retangular	2 lado a lado	
6	FAB BRAS AVIOES	HI -6	Baixa	Convencional	Retangular	2 tandem	
7	DYN AFRO	MCR 01	Baixa	Triciclo	Retangular	2 lado a lado	
8	CESSNA	P206	Alta	Triciclo	Retangular	6	
9	AFRO BOFRO	AB-115	Alta	Convencional	Retangular	2 tandem	
5	ALITO BOLITO	AD-115	Aita	Convencional	Retarigutar	2 tanacin	
10		T-25 Liniversal	Baiya	Triciclo	Tranezoidal	2 lado a lado	
10			Daixa	THCICIO	Trapezoidai	2 1000 0 1000	
11	71 IN	12 M	Baiya	Triciclo	Petangular	2 lado a lado	
	2011	42 101	Daixa	THCICIO	Retariguiai	2 1800 8 1800	
40	71.151	7 700	D .				
12	ZLIN	Z 726	Baixa	Convencional	Retangular	2 tandem	
13	SPORTAVIA	RF6	Baixa	l riciclo	l rapezoidal	2 lado a lado	
14	HALL	HPT-32	Baixa	Triciclo	Trapezoidal	2 lado a lado	
15	ICA-BRASOV	IAR-823	Baixa	Triciclo	Trapezoidal	2-5	
10			Datas				
16	YAKOVLEV	YAK-52	Baixa	Convencional	Irapezoidal	2 lado a lado	
17	SCOTTISH AVIATION	Buldog 100	Baixa	Triciclo	Trapezoidal	2 lado a lado	
18	CAPRONI VIZZOLA	C 22J Ventura	Alta	Triciclo retrátil	Retangular	2 lado a lado	
19	AVIOLIGTH	P.86 Mosquito	Alta	Triciclo		2 lado a lado	
20	GENERAL AVIA	F.20 TC Condor	Baixa	Triciclo	Trapezoidal	4	
21	DATWYLER	MD-3	Média	Triciclo	Retangular	2 lado a lado	
22	FFA	AS 202/18A Bravo	Baixa	Triciclo	Trapezoidal	2 lado a lado	
	SAAR SCANIA	MEL 15	Alto	Triciclo	Potangular	2 lado a lado	
23		MEL 16	Alta	Convoncional	Potangular	2 lado a lado	
24		SkyPangor	Alta	Triciclo	Potangular	2 lado a lado	
20			Baiya	Convencional	Tranezoidal	2 tandom	
20		170	Alto	Tripiplo	Botongular		
21			Aita	Convencional	Retangular	4 2 tandom	
<u>∠0</u> 20			Ddixa	Triciclo	Potongular		
29		Acrospes 11DC		Convensional	Retangular		
30	AEROANCA	Aeroanca TIBC	Alta	Convencional	Retangular		
31		Aeroanca /	Alta	Convencional	Retangular	∠ tandem	
32			Alta	Convencional	Retangular	2 tandem	
33			Alta	Convencional	Retangular	2 tandem	
34	DE HAVILLAND	DHC1	Baixa	Convencional	Retangular	2 tandem	
35	GKUB	G115A	ваіха	I TICICIO	Retangular	∠ iado a iado	

DIMENSÕES EXTERNAS										
Wing Span	Length Overall	height overall	Tailplane span	Wheel track	Wheelbase	Propeller diameter	Chord at root	Chord at tip		
Envergadura	Compr. Total	Altura Total	Envergadura da empenagem horizontal	Distância entre rodas do trem principal	Distância do trem principal à bequilha	Diâmetro da hélice	Corda na raiz	Corda na ponta	Braço EH	Braço EV
m	m	m	m	m	m	m	m	m	m	m
10,15	8,20									
10,76	6,76									
9,80	7,63									
9,97	7,29									
10,17	7,25									
6.62	6,50									
10.97	8.61									
10,07	7.08									
10,70	1,00									
11,00	8,60	3,00	3,95	2,65	2,33	2,13	2	1,08	4,65	5
				1					1.5.5	
9,11	7,07	2,69	2,9	2,33	1,66	2	1,42	1,42		
			_							
9,88	7,98	2,06	3	1,76	4,33	2	1,545			
10,30	7,02	2,36	3,26			1,78	1,52	0,83		
9.50	7 72	2.03		3.3	1 71					
10.00	8.24	2,53		2.48	1,71	2 23	2	1		
10,00	0,24	2,02		2,40	1,00	2,20	2			
9,63	7,50	3,31		2,3	1,61	1,88				
10,06	7,09	2,28	3,35	2,03	1,4	1,88	1,51	0,86		
9,20	6,26	1,88	2,66	1,81	1,81		0,9	0,9		
10,00	6,78	1,92	2,8	2	1,567	1,65				
10,34	8,93	3,50		3,5	2,4	2,03	1,65	1,5		
10,00	6,98	2,92	3	2	1,56	1,88				
9,75	7,50	2,81	3,67	2,25	1,78	1,88				
8.70	7.00	2.60	2.55	2.17	1.54		1.36	1.36		
8,70	6,85	1,90	2,55	2,025	4,75		1,36	1,36		
9,50	5,65	2,40	1			1,73				
10,70	8,40	2,40								
11,00	8,19	2,68								
8,50	6,50	2,60								
10,67	7,25	2,22								
11,00	6,35	2,08								
10,73	6,65	2,13								
10,49	6,92	2,36								
10,73	6,88	2,01								
10,40	1,15	2,13								
10,00	1,30	2,75								

DIME	NSÕES INTE	RNAS	CARACTERÍSTICAS DA ASA							
Length cabin	Height cabin	Width cabin	Aspect ratio		Dihedral	Incidence				
Comp. Cabine	Altura cabine	Largura cabine	Alongamento	Afilamento	Diedro	Incidência na raiz	Incidência na ponta	Espessura relativa	Perfil da raiz	Perfil da ponta
m	m	m			0	0	0	%		
	2.00									
	2,00									
	2,59									
	2,59		6,81							
	2,2									
	-									
	2,83									
	2,05								NACA	NACA
2.2	1.25	1.25	7.03	0.54	6	2	2	15/12	63A315	63A212
,	.,===	.,	.,	-,					NACA	NACA
1,8	1,2	1,12		-	6				63 ₂ 416-5	63 ₂ 416-6
									NACA 241	8 e NACA
2,3	1,5	0,65			4 e 30'				4412 cor	nbinados
			0.44		4				NACA	NACA
			0,44		4				23015	23012
			6		5	2 e 30'				
			6,66		7	3	1		NACA 23012	2 modificado
2,11	1,02	1,14			6,5	1 e 09′			NACA 63 ₂ 615	
			11,1		2	1 e 9'				
0.0	1	1	6 775		1 0 20'	2			NACA	
0,9	1	1	0,775		16.30	3			03A410	
3,66	1,13	1,17								
1,3	1,08	1,12			5 e 30'	2			NACA 64 ₂ 15414	
2,15	1,1	1			5 e 43'	3			NACA 63 ₂ 618	NACA 63 ₂ 415
	1	1,1			1 e 30'			10		
	1	1,1			1 e 30'			10		

CARA	CTERISTICA	AS DAS EMPEN	ÁREAS			
			Elevator area	Wing, gross	Tail plane	Fin area
Alongamento	Afilamento	Enverg. Asa/	Area Profundor/	á	Empenagem	Empenagem
EH	EH	Enverg. EH	Area EH	Area Alar	horizontal	vertical
				m- 10.7	m-	m~
				17.21		
				17,21		
				- 14.6		
				14,0		
				18.6		
				5,2		
				16,2		
				17,4		
6,1	0,66	2,54	0,42	17,2	1,72	0,82
				13,15	1,23	0,54
				14,89	1,42	0,49
				10.57	2.64	1.05
				12,57	2,04	1,05
				15		
				15	3,3	1,5
				14		
				12,02		
			0,338	7,65	1,4	0,808
				12.5	1.34	
				16,02		
				15		
			0.76	13.86	1 88	0.45
			0,70	11.00	1,00	0,40
			0,95	11,8 11.9	2,00	0,77
			0,95	11,0	2,00	0,77
				13		
			1			
				16,5		
				16,7		
				15,9		
				12,2		

PESOS E CARGAS						
Weight	Max T-O and		Mainht fual			
empty	landing weight		vveight fuei	wing loading		
	Peso mávimo		Peso do		Carga máxima por	Eator de
Peso vazio	de decolarem	Carga útil	combustível	Carga alar	envergadura	carga limite
1 030 Va210	ka	ka	ka	ka/m ²	ka/m	G
675	900	. Kg	i i i g	-	Kg/III	+5 3/-2 65
400	660			-		+3.8/-3.8
961.6	1216			-		+6/-3
484	726			49.7		-
513	760			-		-
840	1143			61,5		-
230	490			-		+3,8/-1,5
988	1633					
556	802					
1150	1700/ 1500	550/ 350	239	76.09/ 67.03	98.84/ 87.21	
645	970			74		+3,8/-1,5
700	1.000			67,5		+3,8/-1,5
530	900			71,6		
850	1500					
900	1.190			79		+6/-3
767	1250	380		89,3		+3,3 / -1,8
044	1005			00.0		
644	1065			88,0		
738			360			+7/-3.5
320	540		50	43,2		
1 1 0 0	0400			140.0		
1400	2400			149,8		
633	020			61.3		
033	920			01,5		
740	050		040	75.0		6/ 0
710	950		248	75,8		6/-3
570	900		190	76		4.4/-1.76
570	900	100	190	76		4.4/-1.77
220	478	188		37		+6/-4
837	1111					
557	1304					
640	840					
/52	610					
312	01Z					
525	000 916					
540	817					
526	914					
590	850					
			1			

DESEMPENHO											
Max leval speed	Never exceed speed	Cruising speed	Max manoeuvring speed	Stalling speed, flaps down	Stalling speed, flaps up	Rate of climb	Service Ceiling	Operational Ceiling	Take off run	Landing distance	Range
Velocidade máxima	Velocidade nunca	Velocidade de	Velocidade de	Velocidade stall	Velocidade	Razão de	Teto de	Teto	Distância de	Distância	A1
IIIVeldud	excedida	cruzeiro	Indriublid	C/ Hapes	stall s/ lidpes	Sublua ft/min	Sel VIÇO	operacional	uecolagem	ue pouso	Aicance
NIII/11	NIII/II	157	NIII/II	00	KIII/II	TUTIIII	16000	18,000	225	150	1100
149.7		128.8		62.8	64.4	1110	12400	14.000	285	250	1100
297.7		128,0		64.4	04,4	400	13000	-	-	200	656
196		188		88		670	12000	-	422	328	563
200		195		80	89	715	-	-	221	-	1000
200		181		-		-		12,795	-	-	590
		250		100		1060	14763	-	150	250	-
280		263						15.700			1120
169				64	75	669					1230
300	500	285		104	117	1200	20000		350	350	1500
226		215		89		1025	13950		250	135	530
236		216		98	107	985	14775				440
250		200				748	13125		200	200	840
000						1000	10005				050
260	400	200		94	110	1368	18865		000	200	850
310	400	300		100	115	1378	19025		230	200	800-1.600
235	360	222		85	98	1120	16400		230	175	950
222				100		1006	17000		280	153	1000
	602	482	422	137		580	32800	25.000	650		1296
180	278	160		67	76	770	13100		149	120	360
460	519	435 (75%)		130		3	27900		180		1550
	313	230 (75%)	246	46	56				108	130	1090
241	320	226 (75%)		90	115	800	17000		215	210	1140
261		231		91							
261		231		91							
160	200	160		62	L	838	12000				
200							16000				772
280		255		78,9		645	13100				1158
308	050	185		91,7	ł	007	40040				004
246	259	237		104		667	13240				924
1//		161				650	14500				740
101		120				1345	12400				740
21/		211		67		1545	20000			l	305
223		200		07	t	900	17200				450
220		205				690	17200				1000

	GRUPO MOTO PROPULSOR						
				Max. Power loading			
Motor/ modelo	Potência motor	Peso do motor	Hélice modelo	Peso/ potência	Potência/ peso	Consumo	
T. Lycoming O 225 N2C	110 110	ку 100	Hoffmann HOV 62P 1/170 EA	кулір	пр/ку	1/11	
Continental C90.8 E	00	100	Pupert pau cetim biná				
	90		Sonsonich biná				
Continental O 200 A	220		MeCaulov motalica	7.26	0.14		
Continental O 225 N2C	100	100	McCauley, metalica	7,20	0,14		
Bangar L 440 1	100	100	Piné madaira				
Ranger L-440-1	175		Bipa, madeira				
Rolax 9125	100	201	McCoulov, triné diam. 2m				
T. Lycoming O 225 C2A	300	201	McCauley, tripa diam. 2m				
T. Lyconning O-255-C2A	115	100					
T. Lycoming IO-540	300	201	Hc-C2YK	5.67/ 5.00	0.18/ 0.20	94	
Avia M 137 AZ	180		Avia V 503	4,75	0,21		
Avia M 137 AZ	180		Avia V 504	4,75	0,21		
T. Lycoming O-320-A2B	150	130	Hoffmann HO-V-72 ou HO 14- 178-130	6	0,17		
T. Lycoming AEIO-540-							
D4B5	260	182	Hartzell				
T. Lycoming IO-540-G1D5	290	201	Hartzell				
T. Lycoming AEIO-360- A1B6	200	135	Hartzell	6,25	0,16		
Lycoming IO-360-A1B6	200	135	Hartzell HC-C2YK-4	5,33	0,19		
TRS 18-1							
Limbach L-2000	60/75			7,2	0,14		
	400						
Lycoming O-320-D2A	160	130	McCauley I-Cl60-F6M-7462	7,73	0,13		
	180						
Lycoming IO-320-B20	160	130		5,6	0,18		
Lycoming IO-320-B20	160	130		5,6	0,18		
Rotax 912S	100		GSC, tripá				
Ranger L-440	175						
Lycoming	150						
Lycoming	160		Metalica, passo fixo				
Lycoming	180		Metalica, passo var.				
Continental C-85-8F	85						
Continental A65-8	65						
Lycoming O320B2B	160		Bipa, passo fixo				
Lycoming O360C1G	180		Bipa, passo fixo				
Gipsy Major	145		Madeira, bipá, passo fixo				
Lycoming O235H2C	115		Hoffmann Bipa, passo fixo				

MATERIAL		OBSERVAÇÕES		
material		price	OBSERVAÇÕES	
	Capacidade			
MATERIAL	tanque	PREÇO US\$	OBSERVAÇÕES	
Fibra de vidro e fibra de carbono	90	-	Subst. Paulistinha	
	92	\$30.000,00	Paulistinha	
	174	\$250.000,00		
	98,4	-		
Metálico		-		
	-	-		
	88	\$75.000,00		
	348			
Al				
N 4 - 4 4 1	100			
Metalico	130			
Metálico	70			
Madeira	90			
Metálico	227			
Metálico	360			
	170		Treinador militar	
AI (fuselage semi-monocoque)	159		Treinador militar	
Àl	430			
_				
Ål	70			
			Todos os dados sem as	
	600		minições	
	140			
	170			
Metálico	190			
Metálico	190			
Metálico revest.Dracon	50	\$29.500,00		
		· · · ·		

2.2 Gráficos de Barra

Gráfico 2.1 - Peso Máximo de Decolagem

No gráfico acima está relacionado o peso máximo de decolagem das aeronaves apresentadas na tabela comparativa. Com esse pode-se perceber que o valor do peso máximo das aeronaves se encontra em uma faixa de aproximadamente 700kg. Esse fica bem próximo do requisito desse projeto, o qual é de 750kg para peso máximo de decolagem.

Gráfico 2.2 – Potência

A partir do gráfico de potência, acima, pode-se ter uma idéia da potência que o **BRATI-01** precisará ter para que possa cumprir suas missões típicas, já que as aeronaves relacionadas nesse possuem missões típicas parecidas, com as que precisarão ser desenvolvidas. Essa pot

Gráfico 2.3 – Envergadura

Com o gráfico de envergadura acima relacionado, acima relacionado, é possível também fazer-se um chute inicial da envergadura do **BRATI-01**. O que irá auxiliar nos cálculos preliminares da aeronave.

A média da envergadura dessas aeronaves se encontram em torno de 18m.

Gráfico 2.4 – Comprimento

Esse é outro gráfico que também ajudará a ter uma idéia das possíveis dimensões da aeronave. Com ele é possível perceber que as aeronaves tipo treinador possuem um comprimento em torno de 6,5m.

Gráfico 2.5 - Velocidade máxima

Esse gráfico é mais um dos apresentados que facilitam na comparação e avaliação de parâmetros da aeronave. Com esses é possível observar qual a faixa de velocidade máxima que os aviões tipo treinador possuem. Se algum desses se encontra fora da faixa, procura-se entender o motivo e com isso fazer uma escolha inicial desse parâmetros da aeronave em projeto.

2.3 Gráficos Paramétricos

Gráfico 2.6 – Velocidade máxima x Área Alar

Gráfico 2.7 - Velocidade máxima x Potência

Gráfico 2.8 – Velocidade máxima x Potência/Peso

Em relação aos três gráficos acima representados pode-se observar no primeiro que em algumas aeronaves, é possível que para altas velocidade ter-se uma área alar pequena, o que contribui, consideravelmente, para a diminuição do arrasto.

O segundo relaciona a velocidade máxima com a potência, aí é bem nítido que para altas é necessária uma potência também alta.

No terceiro gráfico, o qual relaciona velocidade máxima e peso/potência, pode-se encontrar aviões que tem uma baixa relação peso/potência e ainda assim possuem uma velocidade máxima acima da especificada por esse projeto. Portanto deve-se concentrar mais atenção nessas aeronaves, quando for de interesse relacionar essas duas variáveis, como: SAAB – SCANIA MFI – 15, SPORTAVIA RF6, YAKOVLEV e PIPER CHEROKEE 140.

2.4 Fichas Técnicas

PIPER CHEROKEE

N° de lugares	2	Vel. nunca excedida	
Envergadura	9,5 m	Velocidade máx	260 km/h
Comprimento	7,72 m	Velocidade de Cruzeiro	
Largura da Cabine		Velocidade de Stall s/ Flap	94 km/h
Área Alar	15 m ²	Velocidade de Stall c/ Flap	110 km/h
Alongamento		Razão de Subida	1368 km
Perfis		Distância de Decolagem	
		Alcance	850
Peso Vazio	850 kg	Autonomia	4,5 h
Dogo Mávimo	1.500 kg	Motor	Ly AEIO-540
Peso Maximo	1.300 kg	MOIOI	D4B5
Carga Útil		Potência	
Carga Alar Máxima		Material	260 hp
Peso / Potência			metálico

CESSNA C-150

N° de lugares	2	Vel. nunca excedida	320 Km/h
Envergadura	9,5 m	Velocidade máx	241 km/h
Comprimento	7,72 m	Velocidade de Cruzeiro	226 km/h
Largura da Cabine		Velocidade de Stall s/ Flap	90 km/h
Área Alar	15 m ²	Velocidade de Stall c/ Flap	115 km/h
Alongamento		Razão de Subida	800m/s
Perfis		Distância de Decolagem	
		Alcance	1140 km
Peso Vazio	850 kg	Autonomia	5h e 30'
Peso Máximo	1.500 kg	Motor	
Carga Útil			
Carga Alar Máxima		Potência	180 hp
Peso / Potência		Material	

AEROMOT AMT 600 - Guri

N° de lugares	2	Vel. nunca excedida	
Envergadura	8,5 m	Velocidade máx	308 km/h
Comprimento	6,5 m	Velocidade de Cruzeiro	185 km/h
Largura da Cabine		Velocidade de Stall s/ Flap	
Área Alar		Velocidade de Stall c/ Flap	91,7 km/h
Alongamento		Razão de Subida	
Perfis		Distância de Decolagem	
Peso Vazio	640 kg	Alcance	
Peso Máximo	840 kg	Autonomia	4 h
Carga Útil		Motor	
Carga Alar Máxima		Potência	160 hp
Peso / Potência		Material	métalico

Nelva T-25 Universal two/three-seat basic training aircraft of the Chilean Army

NEIVA T – 25

N° de lugares	2	Vel. nunca excedida	500 km/h
Envergadura	11,00 m	Velocidade máx	300 km/h
Comprimento	8,60 m	Velocidade de Cruzeiro	285 km/h
Largura da Cabine	1,25 m	Velocidade de Stall s/ Flap	117 km/h
Área Alar	$17,2 \text{ m}^2$	Velocidade de Stall c/ Flap	104 km/h
Alongamento	7,03	Razão de Subida	6,096 m/s
Perfis	NACA 63A315	Distância de Decolagem	350 m
	NACA 63A212	Alcance	1500 km
Peso Vazio	1.150 kg	Autonomia	
Peso Máximo	1.700 / 1.500 kg	Motor	T Lycoming IO-540
Carga Útil	550 / 350 kg	Potência	300 hp
Carga Alar Máxima	76,09 / 67,03	Matarial	4.1
	kg/m ²	Material	Al
Peso / Potência	5,67 kg / hp		

ZLIN 42M

N° de lugares	2	Vel. nunca excedida	
Envergadura	9,11 m	Velocidade máx	226 km/h
Comprimento	7,07 m	Velocidade de Cruzeiro	215 km/h
Largura da Cabine	1,12 m	Velocidade de Stall s/ Flap	
Área Alar	13,15 m ²	Velocidade de Stall c/ Flap	89 km/h
Alongamento		Razão de Subida	5,2 m/s
Perfis	NACA 63 ₂ 416-5	Distância de Decolagem	250 m
	NACA 63 ₂ 416-6	Alcance	530 km
Peso Vazio	645 kg	Autonomia	
Peso Máximo	970 kg	Motor	Avia M 137 AZ
Carga Útil		Potência	180 hp
Carga Alar Máxima	74 kg/m ²	Material	Metálico
Peso / Potência	4,75 kg / hp		

ZLIN Z726

N° de lugares	2	Vel. nunca excedida	
Envergadura	9,88 m	Velocidade máx	236 km/h
Comprimento	7,98 m	Velocidade de Cruzeiro	216 km/h
Largura da Cabine	0,65 m	Velocidade de Stall s/ Flap	107 km/h
Área Alar	$14,89 \text{ m}^2$	Velocidade de Stall c/ Flap	98 km/h
Alongamento		Razão de Subida	5 m/s
Perfis	NACA 2418	Distância de Decolagem	
	NACA 4412	Alcance	440 km
Peso Vazio	700 kg	Autonomia	
Peso Máximo	1.000 kg	Motor	Avia M 137 AZ
Carga Útil		Potência	180 hp
Carga Alar Máxima	67,5 kg/m ²	Material	Metálico
Peso / Potência	4,75 kg / hp		

Prototype Dätwyler MD-3-160 Swiss Trainer

DATWYLER MD – 3

N° de lugares	2	Vel. nunca excedida	313 km/h
Envergadura	10 m	Velocidade máx	
Comprimento	6,98 m	Velocidade de Cruzeiro	230 km/h
Largura da Cabine	1,12 m	Velocidade de Stall s/ Flap	56 km/h
Área Alar	15 m^2	Velocidade de Stall c/ Flap	46 km/h
Alongamento		Razão de Subida	
Perfis	NACA 64 ₂ 15414	Distância de Decolagem	108 m
Peso Vazio	633 kg	Alcance	1.090 km
Peso Máximo	920 kg	Autonomia	
Carga Útil		Motor	Lycoming O-320
Carga Alar Máxima	61,3 kg/m ²		D2A
Peso / Potência	7,73 kg / hp	Potência	160 hp
		Material	

FFA AS 202/18A Bravo

N° de lugares	2	Vel. nunca excedida	320 Km/h
Envergadura	9,75m	Velocidade máx	241 km/h
Comprimento	7,5m	Velocidade de Cruzeiro	226 km/h
Largura da Cabine		Velocidade de Stall s/ Flap	90 km/h
Área Alar	15 m ²	Velocidade de Stall c/ Flap	115 km/h
Alongamento		Razão de Subida	800m/s
Perfis	NACA 632618/	Distância de Decolagem	
	NACA 632415	Alcance	1140 km
Peso Vazio	710 kg	Autonomia	5h e 30'
Peso Máximo	950kg	Motor	
Carga Útil			
Carga Alar Máxima	75,8 Kg/m ³	Potência	180 hp
Peso / Potência		Material	

AERO BRAVO SkyRanger

N° de lugares	2	Vel. nunca excedida	200 km/h
Envergadura	9,5 m	Velocidade máx	160 km/h
Comprimento	5,65 m	Velocidade de Cruzeiro	160 km/h
Largura da Cabine		Velocidade de Stall s/ Flap	
Área Alar	13 m ²	Velocidade de Stall c/ Flap	62 km/h
Alongamento		Razão de Subida	4,257 m/s
Perfis		Distância de Decolagem	
		Alcance	
Peso Vazio	220 kg	Autonomia	4 h
Peso Máximo	478 kg	Motor	Rotax 912S
Carga Útil	118 kg	Potência	100 hp
Carga Alar Máxima	37 kg/m ²	Material	metálico
Peso / Potência			

AEROTEC UIRAPURU A-122B

N° de lugares	2	Vel. nunca excedida	
Envergadura	8,5 m	Velocidade máx	308 km/h
Comprimento	6,5 m	Velocidade de Cruzeiro	185 km/h
Largura da Cabine		Velocidade de Stall s/ Flap	
Área Alar		Velocidade de Stall c/ Flap	91,7 km/h
Alongamento		Razão de Subida	
Perfis		Distância de Decolagem	
Peso Vazio	640 kg	Alcance	
Peso Máximo	840 kg	Autonomia	4 h
Carga Útil		Motor	
Carga Alar Máxima		Potência	160 hp
Peso / Potência		Material	métalico

DE HAVILLAND DHC1

N° de lugares	2	Vel. nunca excedida		
Envergadura	10,46 m	Velocidade máx	223 km/h	
Comprimento	7,75 m	Velocidade de Cruzeiro	200 km/h	
Largura da Cabine		Velocidade de Stall s/ Flap		
Área Alar	$15,9 \text{ m}^2$	Velocidade de Stall c/ Flap		
Alongamento		Razão de Subida		
Perfis		Distância de Decolagem		
		Alcance	450 km	
Peso Vazio	526 kg	Autonomia	2,3 h	
Peso Máximo	914 kg	Motor	Gipsy Major	
Carga Útil		Potência	145 hp	
Carga Alar Máxima		Material		
Peso / Potência				

AVIAT A1 HUSKY

N° de lugares	2	Vel. nunca excedida			
Envergadura	10,73 m	Velocidade máx			
Comprimento	6,88 m	Velocidade de Cruzeiro 225 km			
Largura da Cabine		Velocidade de Stall s/ Flap			
Área Alar	$16,7 \text{ m}^2$	Velocidade de Stall c/ Flap	67 km/h		
Alongamento		Razão de Subida	7,62 m/s		
Perfis		Distância de Decolagem			
		Alcance	1020 km		
Peso Vazio	540 kg	Autonomia			
Doco Mávimo	817 kg	Motor	Lycoming		
	817 Kg	Wotor	O360C1G		
Carga Útil		Potência	180 hp		
Carga Alar Máxima		Material			
Peso / Potência					

AERO BOERO AB-115

N° de lugares	2	Vel. nunca excedida		
Envergadura	10,78 m	Velocidade máx	169 km/h	
Comprimento	7,08 m	Velocidade de Cruzeiro		
Largura da Cabine		Velocidade de Stall s/ Flap	75 km/h	
Área Alar	$17,4 \text{ m}^2$	Velocidade de Stall c/ Flap	64 km/h	
Alongamento		Razão de Subida		
Perfis		Distância de Decolagem	669 ft/min	
Peso Vazio	556 kg	Alcance	1230 km	
Peso Máximo	802 kg	Autonomia		
Carga Útil		Motor	T. Lycoming	
Carga Alar Máxima			O-235-C2A	
Peso / Potência		Potência	115 hp	
		Material		

SCOTTISH AVIATION BULLDOG 100

N° de lugares	2	Vel. nunca excedida	
Envergadura	10,06 m	Velocidade máx 222 km/h	
Comprimento	7,09 m	Velocidade de Cruzeiro	
Largura da Cabine	1,14 m	Velocidade de Stall s/ Flap	
Área Alar	$12,02 \text{ m}^2$	Velocidade de Stall c/ Flap	100 km/h
Alongamento		Razão de Subida	5,11 m/s
Perfis	NACA 63 ₂ 615	Distância de Decolagem	280 m
Peso Vazio	644 kg	Alcance	1000 km
Peso Máximo	1065kg	Autonomia	
Carga Útil		Motor	Lycoming IO-360-
Carga Alar Máxima			A1B6
Peso / Potência	5,33 kg/hp	Potência	200 hp
		Material	Al

SAAB-SCANIA MFI-15

N° de lugares	2	Vel. nunca excedida	
Envergadura	8,70 m	Velocidade máx	261 km/h
Comprimento	7,00 m	Velocidade de Cruzeiro 231 km/h	
Largura da Cabine	1,1 m	Velocidade de Stall s/ Flap	
Área Alar	11,8	Velocidade de Stall c/ Flap	91 km/h
Alongamento		Razão de Subida	
Perfis		Distância de Decolagem	
Peso Vazio	570 kg	Alcance	
Peso Máximo	900 kg	Autonomia	
Carga Útil		Motor	Lycoming IO-320-
Carga Alar Máxima	76 kg/m^2		B20
Peso / Potência	5,6 kg/hp	Potência	160
		Material	Metálico

2.5 Lista de Prioridades

2.5.1 Segurança operacional em vôo: Desempenho / Manobrabilidade

Estol suave, gradativo e mantendo controlabilidade ao longo da perda da sustentação

Evitar estol abrupto

Boas respostas dos comandos em baixas velocidades

Diminuição do arrasto

2.5.2 Manutenção: Facilidade de manutenção e segurança operacional no solo

Montagem a prova de falha

Simetria dos componentes

Padronização

Desmontabilidade

Acessibilidade na manutenção

- Motor;
- Equipamentos

Resistir a agentes externos

2.5.3 Custo de Fabricação / Simplicidade Construtiva

Simplicidade Construtiva Minimização de moldes para estampagem Dimensões e pesos reduzidos;

2.5.4 Ergonomia

37

Faixa de estaturas do piloto e treinador

- Posicionamento dos comandos
- Posicionamento do assento

Conforto e visibilidade no vôo

Forças moderadas para o acionamento das superfícies de comando

Ventilação adequada

Cinto de segurança de 4 pontos

2.5.5 Estética

3 DEFINIÇÃO DA CONFIGURAÇÃO DA AERONAVE

3.1 Estimativa de Peso

As estimativas de peso da aeronave foram feitas considerando-se alcance e autonomia de cada uma das missões, assim obteve-se quatro estimativas de peso. Porém apresentase apenas a estimativa para alcance da missão 2 em razão dessa ser a mais crítica. Tais estimativas foram calculadas segundo Roskam [VI] sugere. Foram feitas algumas iterações até se obter a convergência desejada.

3.1.1 Cálculos para estimativa de peso

$$W_E = W_{TO} - W_F - W_{TFO} - W_{PL} - W_{crew}$$

Onde:

 W_E = Peso Vazio W_{TO} = Peso Máximo de Decolagem W_F = Peso do Combustível W_{PL} = Peso da Carga Paga W_{TFO} = Peso do combustível reserva mais óleo W_{crew} = Peso da tripulação

Sendo que foi primeiramente estimado um peso máximo de decolagem de 750 kg

$$W_{TO} = 750 \text{ kg}$$

O peso do combustível foi calculado como relaciona abaixo:

$$W_{Fused} = \left(1 - M_{ff}\right) \cdot W_{TO}$$

Sabendo-se que $M_{\rm ff}$ é a fração mássica de combustível que pode ser calculado da seguinte forma:

$$M_{ff} = \left(\frac{W_1}{W_{TO}}\right) \prod_{i=1}^n M_{fi}$$

onde:

 $W_1 = ?$

W_{TO} = Peso Máximo de Decolagem

M_{ffi} = Fração de Combustível da Fase da Missão

O M_{ff} foi estimado segundo Roskam [VI] para todas as fases da missão, menos para cruzeiro o qual é calculado como mostrado abaixo através da Equação de Breguet. Esses valores estão relacionados abaixo.

Aquecimento	0,995
Taxi	0,997
Decolagem	0,998
Subida	0,992
Cruzeiro	0,924
Descida	0,993
Pouso	0,993

$$R = 375 \cdot \left(\frac{\eta_p}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_0}{W_1}\right)$$
$$M_{ffi} = \frac{W_1}{W_0} = e^{-\left(\frac{R.\eta_p.C_L}{375.c_p.C_D}\right)}$$

Sendo:

R = Alcance

C_L = Coeficiente de sustentação de cruzeiro

 C_D = Coeficiente de arrasto

 η_p = Eficiência da hélice (0,8 - valor estimado à partir da tabela 2.2 do Roskam [VI]

 c_p = Consumo específico (0,34 - valor estimado à partir do consumo específico de um motor Lycoming de 115

$$C_D = C_{Do} + \frac{C_L^2}{\pi \cdot A \cdot e}$$

Sendo:

A = Razão de aspecto (8,5 - retirado da tabela comparativa)

e = Fator de Osvald (0,83 - com base na tabela 3.6 do Roskam [VI])

 C_{Do} = Coeficiente de arrasto parasita (0,036 – calculado como relacionado a seguir)

$$C_{Do} = \Delta C_{Do} + \frac{f}{S}$$

Sendo:

 ΔC_{do} = Variação do coeficiente de arrasto parasita assumindo que o trem de pouso será limpo aerodinamicamente (0,015 – tabela 3.6 do Roskam [VI]

S =área alar (139,5 ft² - estimado utilizando-se tabela comparativa)

f = calculado como relacionado abaixo

$$f = 10^{a + \log S_{wet}.b}$$

Sendo:

a e *b* - constantes retiradas da tabela 3.4 do Roskam [VI] à partir de um valor de $c_f = 0,007$ considerando que o avião em questão será limpo aerodinamicamente.

a = -2,1549

b = 1

 $logS_{wet}$ calculado a seguir

$$S_{wet} = c + d \cdot \log W_{to}$$

Sendo:

c e d - constantes retiradas da tabela 3.5 do Roskam [VI] considerando a categoria homebuilts já que nas primeiras estimativas de peso utilizando a categoria

single engine propeller driven não se obteve uma convergência do peso. O que enfatiza a necessidade de que avião seja limpo aerodinamicamente

$$c = 1,2362$$

 $d = 0,4319$
 $W_{TO} = 1653,47$ lbf

O C_L de cruzeiro pode ser calculado pela equação abaixo estimando-se uma velocidade de cruzeiro à partir da tabela comparativa.

$$C_{L_{cruz}} = \frac{2 \cdot W}{\rho \cdot S \cdot V_{cruz}^{2}}$$

Sendo:

W = peso máximo de decolagem (1653,47 lb- estimado anteriormente para o calculo da estimativa de peso)

 ρ = densidade do ar para altura de 10000ft (0,0018 slug/ft³)

 V_{cruz} = estimado da tabela comparativa (218,72 ft/s)

Então o $C_{\rm L}$

$$C_{L_{max}} = 0,28$$

E o C_D já pode ser calculado.

$$C_{D} = 0.04$$

Assim pode-se calcular o valor do peso do combustível usado.

$$W_{Fused/used} = 79,17 kgf$$

O peso do combustível total é calculado como mostrado abaixo.

$$W_F = W_{Fused / used} . (1 + 0.25)$$

Sendo 0,25 a percentagem de combustível reserva estimado.

Considerando peso dos instrumentos igual a 0,04 do peso máximo de decolagem estimado tem-se:

$$W_{instrumentos} = 0,04.W_{to}$$

 $W_{instrumentos} = 30 kgf$

E sabendo que os fluidos restantes são aproximadamente 0,5% do peso estimado

$$W_{instrumentos} = 0,005.W_{to}$$

 $W_{instrumentos} = 3,75$

Então finalmente temos:

 $W_E = 473,\!28$

Figura 3.1 – Gráfico do peso máximo de decolagem x peso vazio

Com esse valor consulta-se a Figura 3.1 do Roskam [VI] acima e obtém-se o valor de W_{to} que é comparado com o anteriormente estimado. Se o valor da tabela for inferior ou igual ao estimado, pode-se concluir que o peso estimado é aceitável, se não deve-se fazer iterações até que o valor convirja. No nosso caso esse valor convergiu na primeira iteração. Então:

$W_{TO} = 750 \text{ kg}$

Para o caso de estimar através da autonomia usa-se a equação abaixo no lugar da equação de Breguet, para o cálculo do $M_{\rm ffi}$ de cruzeiro.

$$E = 375 \cdot \left(\frac{1}{V}\right) \cdot \left(\frac{\eta_p}{c_p}\right) \cdot \left(\frac{L}{D}\right) \cdot \ln\left(\frac{W_1}{W_2}\right)$$
(Eq. 3.4)

3.1.2 Missão 1

3.1.2.1 Alcance

Essa estimativa foi realizada em duas iterações.

Dados		Cálculos			
Wto [kg] inicial	750.000			Aquecimento	0.995
Mto [lbf] (tab. comp.)	1653.467			Taxi	0.997
Wto [N]	7354.988	log Swet	2.626	Decolagem	0.998
Peso [kg] (estimativa IBGE)	72.000	f	2.960	Subida @ 3000ft	0.992
np (tab. 2-2)	0.800	Cdo	0.036	Manobra	0.99
Cp (tab. 2-2)	0.340	CI	0.896	Subida de 3000ft a 7000ft	0.992
S [m^2] (tab. comp.)	12.960	Cd	0.072	Manobra	0.99
S [ft^2]	139.500	L/D máx	12.369	Descida	0.993
c (tab. 3-5)	1.236	Cl(cruz.)	0.257	Tráfego	0.99
d (tab. 3-5)	0.432	Cd(cruz.)	0.039	Descida	0.993
cf (tab. 3-21) (avião limpo aerod.)	0.007	L/D cruz	6.560	Pouso	0.993
a (tab. 3-4)	-2.155	W1/Wo	0.918	Mff	0.9256
b (tab. 3-4)	1.000	Wf used [kgf]	55.797	123.0105137	lbf
e (tab. 3-6)	0.830	Wf [kgf]	69.746	153.7631421	lbf
A (tab. comp.)	8.500	Wf [litros]	96.869		
delta Cdo (tab. 3-6)	0.015	W[kgf] instrumentos	30.000		
ro_s [Kg/m^3]	1.225	Woe [kgf]	506.254	1116.099487	lbf
ro @ 7000ft [kg/m^3]	0.993	Wtof [kgf]	3.750	8.267334825	lbf
ro @ 7000ft [slug/ft^3]	0.002	We [kgf] tent	502.504	1107.832152	lbf
Vcruz. [km/h]	240.000				
Vcruz. [m/s]	66.667				
Vcruz. [ft/s]	218.723				
Vautonomia [mph]	149.129				
R [km]	800.000				
R [milhas terrestres]	497.097				
Reserva	0.250	Wto [Kg] comparativa	789.047	1739.551481	lbf
		Diferença[kg] Wto-Graf.	39.047		
		Wto [kg] novo comp	710.953		

Dados		Cálculos			
				Aquecimento	0.995
				Taxi	0.997
Wto [kg] inicial	710.953	log Swet	2.616	Decolagem	0.998
Mto [lbf] (tab. comp.)	1567.382	f	2.893	Subida @ 3000ft	0.992
Wto [N]	6972.065	Cdo	0.036	Manobra	0.99
Peso [kg] (estimativa IBGE)	72.000	CI	0.890	Subida de 3000ft a 7000ft	0.992
np (tab. 2-2)	0.800	Cd	0.071	Manobra	0.99
Cp (tab. 2-2)	0.340	L/D máx	12.452	Descida	0.993
S [m^2] (tab. comp.)	12.960	Cl(cruz.)	0.244	Tráfego	0.99
S [ft^2]	139.500	Cd(cruz.)	0.038	Descida	0.993
c (tab. 3-5)	1.236	L/D cruz	6.346	Pouso	0.993
d (tab. 3-5)	0.432	W1/Wo	0.915	Mff	0.9256
cf (tab. 3-21) (avião limpo aerod.)	0.007	Wf used [kgf]	52.892	116.6062125	lbf
a (tab. 3-4)	-2.155	Wf [kgf]	66.115	145.7577657	lbf
b (tab. 3-4)	1.000	Wf [litros]	91.826		
e (tab. 3-6)	0.830	W[kgf] instrumentos	28.438		
A (tab. comp.)	8.500	Woe [kgf]	472.400	1041.46373	lbf
delta Cdo (tab. 3-6)	0.015	Wtof [kgf]	3.555	7.836912253	lbf
ro_s [Kg/m^3]	1.225	We [kgf] tent	468.845	1033.626817	lbf
ro @ 7000ft [kg/m^3]	0.993				
ro @ 7000ft [slug/ft^3]	0.002				
Vcruz. [km/h]	240.000				
Vcruz. [m/s]	66.667				
Vcruz. [ft/s]	218.723				
Vautonomia [mph]	149.129				
R [km]	800.000	Wto [Kg] comparativa	722.789	1593.477987	lbf
R [milhas terrestres]	497.097	Diferença[kg] Wto-Graf.	11.837		
Reserva	0.250	Wto [kg] novo comp	699.116		

Resumo	
Wto [kg] inicial	710.953
Woe [kgf]	472.400
Wf used [kgf]	52.892
Wf [kgf]	66.115

3.1.2.2 Autonomia

Essa estimativa foi realizada em duas iterações.

Marka Aquecimento 0.997 Wito [kt] (hindia 750.000 [ing Swet 2.626 Decolagem 0.998 Wito [kt] 750.000 [ing Swet 2.626 Decolagem 0.998 Wito [kt] 755.000 0.386 Eutoida §2000ft 0.992 Poss [kt] (estimativa IBGE) 72.000 0.386 Eutoida §2000ft 0.992 Co 0.386 Eutoida §2000ft 0.993 0.993 S [m*2] (tab. comp.) 12.960 Ci(cruz.) 0.287 Trafego 0.993 C (tab. 3-5) 0.432 WitWo 0.975 Mtf 0.992 C (tab. 3-6) 0.432 WitWo 0.975 Mtf 0.926 C (tab. 3-6) 0.803 UV ruz. 6.668 0.830 C (tab. 3-6) 0.010 Wit [ktg] 50.977 ft 123.011 btf Wit [ktg] 0.975 Mtf 0.926 Wit [ktg] 6.9778 123.011 btf C (tab. 3-6) 0.031 Wit [ktg] 50.777 ft 123.011 btf Wit [ktg] 50.777 ft 123.011 btf	Dados			Cálculos			
Tax Tax 0.997 Mio [kii] Inicial 750.000 [og Swett 2.626 Decolagem 0.998 Mio [kii] (tab. comp.) 1653.467 [f 2.960 Subida @ 3000th 0.992 Peso [kii] (estimativa IBGE) 72.000 Cd 0.036 Manobra 0.990 Op (tab. 22) 0.800 Cd 0.037 Manobra 0.990 Op (tab. 22) 0.340 U/D máx 12.369 Descida 0.993 S [m²] (tab. comp.) 12.960 Ci(cruz.) 0.037 Manobra 0.993 G (tab. 3-5) 1.236 Do cruz 6.560 Pouso 0.993 G (tab. 3-41) 1.000 Wi [kgi] 69.746 153.763 167 G (tab. 3-41) 1.000 Wi [kgi] 56.727 112.011 bit G (tab. 3-61) 0.053 Wi No 0.997 Mif 0.926 G (tab. 3-61) 0.051 G (tab. 3-61) 0.051 G (tab. 3-61) 0.051 G (tab. 3-61) 0.052 G (tab. 3-61) 0.052 1007 Vi (kgi] (tab.0001					Aquecimento	0.995	
Wite Igin licial 750.000 Igg Swet 2.628 Decolagem 0.988 Wite IM 7554.988 Cdo 0.038 Manobra 0.990 Peso Igi (restimativa IBGE) 772.000 Cl 0.886 Subbid ad 8.3000ft 0.992 pt (tab. 2-2) 0.340 Cd 0.037 Manobra 0.990 C (tab. 2-2) 0.340 Cd 0.037 Manobra 0.990 S (tab. 3-5) 12.960 Ci(cruz) 0.257 Tráfego 0.990 C (tab. 3-5) 0.432 U/D oruz 6.560 Poesida 0.993 G (tab. 3-21) (avião limpo aerod.) 0.007 Wi (walf) 55.737 112.011 bD G (tab. 3-4) 1.000 Wi (walf) 56.757 112.011 bD G (tab. 3-4) 0.037 Wi (walf) 56.757 112.011 bD G (tab. 3-6) 0.432 Wit (walf) 56.62 1107.332 bD G (tab. 3-61) 0.015 Wit (kg1) 37.50 8.267 107 </td <td></td> <td></td> <td></td> <td></td> <td>Taxi</td> <td>0.997</td>					Taxi	0.997	
Mine (Jinf) (tab. comp.) 1653.467 (1) f. 2.960 Subida @ 3000th 0.992 Peso [kg] (estimativa IBGE) 72.000 CI 0.836 Subida @ 3000th 0.992 Oppo (tab. 2-2) 0.800 Cd 0.036 Manobra 0.990 Character 0.921 0.800 Cd 0.072 Manobra 0.990 Cymp.) 12.960 Ci(cruz.) 0.237 Trifetego 0.993 S (h*2) 139.500 Cd (cruz.) 0.039 Deside 0.993 C (tab. 3-5) 0.432 Virwo 0.975 Mif 0.926 C (tab. 3-5) 0.432 Virwo 0.975 Mif 0.926 C (tab. 3-6) 0.800 Virkof 0.975 Mif 0.926 C (tab. 3-6) 0.015 Virkof (kg1 57.57 123.011 Dif C (tab. 3-6) 0.015 Virkof (kg1 37.50 8.27 Ibf C (tab. 3-6) 0.015 Virkof (kg1 37.50 8.27 Ibf	Wto [kg] inicial	750.000	log Swet	2.626	Decolagem	0.998	
Wite [N] 7354.988 Cdo 0.036 Manobra 0.990 Press [kg] (estimativa IBGE) 72.000 Cl 0.896 Subida de 3000t a 7000t 0.992 pn (tab. 2-2) 0.340 U/D max 12.360 0.072 Manobra 0.990 C (tab. 2-2) 0.340 U/D max 12.360 0.072 0.340 0.993 S [m*2] (tab. comp.) 12.960 C(cruz.) 0.257 Trátego 0.993 G (tab. 3-5) 0.432 W/Wo 0.993 <t< td=""><td>Mto [lbf] (tab. comp.)</td><td>1653.467</td><td>f</td><td>2.960</td><td>Subida @ 3000ft</td><td>0.992</td></t<>	Mto [lbf] (tab. comp.)	1653.467	f	2.960	Subida @ 3000ft	0.992	
Peso [kg] (estimativa IBGE) 72.000 CI 0.986 Subida de 300ft a 7000ft 0.990 Cd 0.072 Manobra 0.990 Cy (tab. 2-2) 0.340 L/D max 12.360 Descida 0.990 S [ff*2] (tab. comp.) 12.960 Ci(cruz.) 0.031 Descida 0.990 S [ff*2] (tab. comp.) 12.960 Ci(cruz.) 0.036 Descida 0.993 G (tab. 3-5) 0.432 VI (word.) 0.975 Mff 0.923 G (tab. 3-6) 0.432 VI (word.) 0.976 Mff 0.926 G (tab. 3-6) 0.0432 VV (word.) 0.976 Mff 0.928 G (tab. 3-6) 0.015 VV (kg] 69.746 1153.763 160 Value comp.) 8.500 VV (kg] 10.750 8.267 100 Veruz. [km/h] 0.002 VV (kg] 0.750 8.267 100 Veruz. [km/h] 0.40000 VV (kg] (tabt. 60.667 VV (kg] (tabt. 60.677 VV (kg] novo comp 710.953 100 Veruz. [km/h] 149.129 VV (kg] novo comp <t< td=""><td>Wto [N]</td><td>7354.988</td><td>Cdo</td><td>0.036</td><td>Manobra</td><td>0.990</td></t<>	Wto [N]	7354.988	Cdo	0.036	Manobra	0.990	
Op (tab. 2-2) 0.800 Cd 0.072 Manobra 0.990 S (tr2) 0.340 L/D máx 12.360 0.072 Manobra 0.993 S (tr2) 139,500 Cd(cruz,) 0.257 Trafego 0.993 C (tab. 3-6) 1.236 L/D cruz 6.560 Pouso 0.993 C (tab. 3-5) 0.432 Wi Nov 0.975 Mff 0.923 C (tab. 3-21) (avião limpo aerod.) 0.007 Wi used [kgf] 55.797 123.011 bg T (tab. 3-6) 0.000 Wi used [kgf] 55.797 123.011 bg T (tab. 3-6) 0.000 Wi used [kgf] 50.6254 1116.099 bg T (tab. 3-6) 0.015 Wto [kgf] 3.750 8.267 bg Veruz, [m/h] 240.000 Veruz [kgf] 57.50 8.267 bg Veruz, [m/h] 240.000 C C Co co co Veruz, [km/h] 248 C3 Mto [kgf] no:caraf 39.047 <	Peso [kg] (estimativa IBGE)	72.000	CI	0.896	Subida de 3000ft a 7000ft	0.992	
Cp (tab. 2-2) 0.340 L/D max 12.360 Descida 0.993 S(m*2) (tab. comp.) 12.960 C(cruz.) 0.030 Descida 0.990 S(ft*2) 139.500 C(cruz.) 0.030 Descida 0.993 Cf (tab. 3-5) 0.432 Vi Nvo 0.975 Mff 0.926 Cf (tab. 3-5) 0.432 Vi Nvo 0.975 Mff 0.926 Cf (tab. 3-4) -2.155 Vi R(g1) 65.797 123.011 bf Vi Lab. 3-4) -2.155 Vi R(g1) 69.746 153.763 bf Vi Lab. 3-4) 0.001 Vi R(g1) 57.77 123.011 bf Vi Lab. 3-6) 0.015 Vi R(g1) 57.50 8.267 bf Vo g Kg01 50.2504 1107.832 bf bf bf Vo g Kg01 0.022 0.4000 Vi K(k0] comparativa 789.047 1739.551 bf Vo g Kg01 1000 Vio (K0] comparativa 789.047 1739.553 bf Voruz. (Irs) 66667 Vio (K0] co	np (tab. 2-2)	0.800	Cd	0.072	Manobra	0.990	
S [m*2] (tab. comp.) 12.960 Cl(cruz.) 0.257 [Tráfego 0.990 c (tab. 3-5) 1.236 L/D cruz 6.360 Pouso 0.993 c (tab. 3-5) 0.432 W1Wo 0.975 Mff 0.926 c (tab. 3-5) 0.432 W1Wo 0.975 Mff 0.926 c (tab. 3-4) 1.000 W1 used (kgl) 65.797 123.011 bfr o (tab. 3-4) 1.000 W1 used (kgl) 65.797 123.011 bfr o (tab. 3-4) 1.000 W1 used (kgl) 65.797 123.011 bfr o (tab. 3-4) 1.000 W1 litros] 96.869 107.875 bfr o (tab. 3-6) 0.015 W1 [ting] 506.254 1116.099 bfr o (tab (kgl) (tab) (ta	Cp (tab. 2-2)	0.340	L/D máx	12.369	Descida	0.993	
S (H*2) (139.50) Cd(cruz.) 0.039 [bescida 0.993 (tab. 3-5) 1.236 LD cruz 6.560 [Pouso 0.993 (tab. 3-5) 0.432 W1Wo 0.975 [Mff 0.926 (tab. 3-4) -2.155 W1Wo 0.975 [Mff 0.926 (tab. 3-4) -0.030 W1Wo 0.975 [Mff 0.926 (tab. 3-4) -0.031 W1 litros] 96.869 100 (tab. 3-6) 0.015 W1 litros] 96.869 1116.099 [lbf (tab. 3-6) 0.015 W16 [kgf] 3.750 8.267 [lbf (tab. 3-6) 0.015 W16 [kgf] 502.504 1107.832 [lbf (tab. 3-6) 0.025 W10 [kg] (nstrumentos 50.000 1107.832 [lbf (varuz, link) 240.000 Veruz, link) 240.000 100 100 Veruz, link) 240.000 Veruz, link) 240.000 100 100 Veruz, link) 218.72 0.800 100 100 100 Veruz, link) <t< td=""><td>S [m^2] (tab. comp.)</td><td>12.960</td><td>Cl(cruz.)</td><td>0.257</td><td>Tráfego</td><td>0.990</td></t<>	S [m^2] (tab. comp.)	12.960	Cl(cruz.)	0.257	Tráfego	0.990	
c (ab. 3-5) 1236 LD cruz 6.660 [Pouso 0.993 (ab. 3-5) 0.432 [V1Wo 0.975 [Mff 0.926 (btb. 3-21) [avi80 limpo aerod.) 0.007 (a (ab. 3-5) 0.215 [V1Wigf] 69.746 153.763 [bf] V1Wigf] 69.746 153.763 [bf] V1Wigf] 69.746 153.763 [bf] V1Wigf] 69.746 153.763 [bf] V1Wigf] 750.254 [116.90] V106 [kgf] 50.254 [116.90] V106 [kgf] 3.750 8.267 [bf] V106 [kgf] 3.750 8.267 [bf] V106 [kgf] 3.750 8.267 [bf] V106 [kgf] 1.3.750 8.267 [bf] V106 [kgf] 1.3.750 8.267 [bf] V107 [kgf] 1.3.551 [bf] V107 [kgf] 1.3.555 [bf] V107 [S [ft^2]	139.500	Cd(cruz.)	0.039	Descida	0.993	
d (ab. 3-5) 0.432 W1/Wo 0.976 [Mff 0.926 d (ab. 3-5) (aviso) impo aerod.) 0.007 W1/Wo 0.976 [Mff 0.926 b (ab. 3-4) -2.155 W1/Wo 96.869 153.763 br b (ab. 3-6) 0.030 W1/Wintros 30.000 97.46 153.763 br A (ab. comp.) 8.500 W1/Wg (largf) 3.750 8.267 br Wo [kgf] 3.750 8.267 br br <t< td=""><td>c (tab. 3-5)</td><td>1.236</td><td>L/D cruz</td><td>6.560</td><td>Pouso</td><td>0.993</td></t<>	c (tab. 3-5)	1.236	L/D cruz	6.560	Pouso	0.993	
of (tab. 3-21) (avião impo aerod.) 0.007 Wf used [kgf] 55.787 123.011 lbf b (tab. 3-4) -2.155 Wf [kgf] 69.746 153.763 lbf b (tab. 3-6) 0.030 96.869 97.46 153.763 lbf A (tab. comp.) 8.500 Wite [kgf] 50.6254 1116.099 lbf Vator (kgf] 3.750 8.267 lbf Wite [kgf] 3.750 8.267 lbf vorag. Toxing (kgf) 0.933 0.933 lbf lbf <t< td=""><td>d (tab. 3-5)</td><td>0.432</td><td>W1/Wo</td><td>0.975</td><td>Mff</td><td>0.926</td></t<>	d (tab. 3-5)	0.432	W1/Wo	0.975	Mff	0.926	
a (ab. 3-4) -2.155 Wf [kgf] 69.746 153.763 bf b (ab. 3-4) 1.000 Wf [king] 69.766 153.763 bf b (ab. 3-6) 0.830 Wf [king] 506.254 1116.099 bf b (ab. 3-6) 0.015 Wto [kgf] 5.750 8.267 bf vor @ 7000f [kg/m*3] 0.993 0.002 Wto [kgf] 502.504 1107.832 bf voruz. [m/s] 66.667 Wto [kg] comparativa 789.047 1739.551 bf Veruz. [km/h] 240.000 Wto [kg] nova comp 710.953 Wto [kg] nova comp 10.953 wto [kg] incial 710.953 Mto [kg] nova comp 710.953 Taxi 0.995 mo (ab. 2-2) 0.800 0.036 Manobra 0.992 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.99	cf (tab. 3-21) (avião limpo aerod.)	0.007	Wf used [kgf]	55.797	123.011	lbf	
b (ab. 3-4) 1.000 Wf [litos] 96.869 (ab. 3-6) 0.830 We [kgf] 500.254 1116.099 bf A (ab. comp.) 8.500 We [kgf] 3.750 8.267 bf A (ab. comp.) 0.015 Wto [kgf] 3.750 8.267 bf Or go Tool (kg/m*3] 0.933 0.933 0.933 bf <	a (tab. 3-4)	-2.155	Wf [kgf]	69.746	153.763	lbf	
e (ab. 3-6) 0.830 W(kg) instrumentos 30.000	b (tab. 3-4)	1.000	Wf [litros]	96.869			
A (tab. comp.) 8.500 Woe [kgf] 506.254 1116.099 Ibf odelta Cdc (tab. 3-6) 0.015	e (tab. 3-6)	0.830	W[kgf] instrumentos	30.000			
Date 0.015 Wto [kgf] 3.750 8.267 Ibf ro @ 7000ft [kg/m^3] 0.993	A (tab. comp.)	8.500	Woe [kgf]	506.254	1116.099	lbf	
To. s [Kg/m^3] 1.225 We [kgf] tent 502.504 1107.832 Ibf ro @ 7000ft [slug/ft*3] 0.093 0.092 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.0033 0.002 0.024	delta Cdo (tab. 3-6)	0.015	Wtof [kgf]	3.750	8.267	lbf	
Color Color <th< td=""><td>ro_s [Kg/m^3]</td><td>1.225</td><td>We [kgf] tent</td><td>502.504</td><td>1107.832</td><td>lbf</td></th<>	ro_s [Kg/m^3]	1.225	We [kgf] tent	502.504	1107.832	lbf	
Image: constraint of the second sec	ro @ 7000ft [kg/m^3]	0.993					
Vcruz. [km/h] 240.000 Vcruz. [km/h] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 Vautonomia [mph] 149.129 Vautonomia [mph] 149.129 E[h] 1.000 Reserva 0.250 Wto [kg] incial 710.953 Mto [blf] (tab. comp.) 1567.382 If tab. comp.) 1567.382 Ig kas comp.) 1567.382 Ig kas comp.) 12.960 Cd 0.0340 Cd 0.0340 Cd 0.0340 Cd 0.0310 LD máx 12.4260 S [ft*2] 139.500 C (tab. 3-5) 1.2360 L/D máx 12.422 Descida 0.993 L/D máx 12.422 Descida 0.993 L/D máx 12.422 Descida 0.993 L/D máx 12.452 Musobra 0.926 Difterocal (kg/m^3) 0.934	ro @ 7000ft [slug/ft^3]	0.002					
Vcruz. [m/s] 66.667 Vautonomia [mph] 149.129 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [kg] incial 710.953 Mto [bf] (tab. comp.) 1567.382 Wto [kg] estimativa IBGE) 72.000 peso [kg] (estimativa IBGE) 72.000 p (tab. 2-2) 0.800 C (tab. 2-2) 0.3400 S [m*2] (tab. comp.) 12.860 S [m*2] (tab. comp.) 12.860 S [m*2] (tab. comp.) 12.860 C (tab. 3-5) 1.2360 C (tab. 3-5) 0.4320 C (tab. 3-5) 0.4320 C (tab. 3-6) 0.037 O (tab. 3-21) (avião limpo aerod.) 0.007 Vilvo 0.974 Mtf 0.9930 Carcuz.) 0.2432 116.606 107 Vilvo 0.974 Mtf 0.9930 0.9930 C (tab. 3-6) 0.015 Wf [kgf] 52.892 116.606 107 Voruz. [m/h] 240.000 Wf [kg	Vcruz. [km/h]	240.000					
Vcruz, [tr/s] 218.723 V/o [Kg] comparativa 78.9.47 1739.551 lbf Vautonomia [mph] 149.129 Wto [Kg] comparativa 39.047 1739.551 lbf Reserva 0.250 Wto [Kg] novo comp 710.953 Vto Kg Wto [Kg] inicial 710.953 Vto [Kg] comparativa 89.047 1739.551 lbf Wto [Kg] novo comp 710.953 Cálculos Vto Kg No Kg No	Vcruz. [m/s]	66.667					
Vautonomia [mph] 149.129 Wto [Kg] comparativa 789.047 1739.551 Ibf E [h] 1.000 Diferença[kg] Wto-Graf. 39.047 1739.551 Ibf Reserva 0.250 Wto [kg] comparativa 789.047 1739.551 Ibf Reserva 0.250 Wto [kg] comparativa 789.047 1739.551 Ibf Reserva 0.250 Wto [kg] comparativa 789.047 1739.551 Ibf Reserva 0.250 Wto [kg] comparativa 39.047 1739.551 Ibf Wto [kg] comparativa 720.00 Wto [kg] comparativa 710.953 Ibf Ibf Wto [kg] cestimativa IBGE) 72.000 f 2.616 Decolagem 0.990 Cl (ab. 2-2) 0.340 Cd 0.071 Manobra 0.990 Cl (ab. 2-2) 0.340 Cd 0.071 Manobra 0.990 Cl (ab. 2-3) 0.433 12.260 Cd 0.071 Manobra 0.993 f (tab. 3-6) 0.430 1.0200	Vcruz. [ft/s]	218.723					
E [h] 1.000 Differença[kg] Wto-Graf. 39.047 Reserva 0.250 Wto [kg] novo comp 710.953 Wto [kg] inicial 710.953 Aquecimento 0.995 Mto [kg] inicial 710.953 Taxi 0.997 Wto [kg] inicial 710.953 Image: Calculos 0.995 Mto [kg] inicial 710.953 Taxi 0.997 Wto [kg] cestimativa IBGE) 72.000 F 2.833 <subida 3000ft<="" @="" td=""> 0.998 prot (ab. 2-2) 0.800 Cdo 0.036 Manobra 0.990 Club 2-2) 0.340 Cl 0.800 Subida @ 3000ft 0.992 S (m*2] (tab. comp.) 12.960 Cd 0.071 Manobra 0.990 C (tab. 3-5) 0.432 Cl(cruz.) 0.244 Tráfego 0.993 G (tab. 3-4) -2.155 W1/Wo 0.974 Mtf 0.926 b (tab. 3-4) -2.155 W1/Wo 0.974 Mtf 0.926 C (tab. 3-6) 0.8030 Wf [kg1] 66.1</subida>	Vautonomia [mph]	149.129	Wto [Kg] comparativa	789.047	1739.551	lbf	
Dados Vito [kg] novo comp 710.953 Wto [kg] inicial 710.953 Mto [bf] (tab. comp.) 1567.382 Mto [kg] nicial 710.953 Mto [kg] inicial 710.953 Mto [kg] novo comp 710.953 Mto [kg] novo comp. 0.800 S [fr ¹ 2] 0.800 G (tab. 3-5) 1.236 C (dcurs.) 0.038 Descida 0.993 Mto [kg] novo comp. 0.432 Cd(cruz.) 0.038 Descida 0.993 I (tab. 3-4) 0.007 <th< td=""><td><u>E [h]</u></td><td>1.000</td><td>Diferença[kg] Wto-Graf.</td><td>39.047</td><td></td><td></td></th<>	<u>E [h]</u>	1.000	Diferença[kg] Wto-Graf.	39.047			
Dados Cálculos Wto [kg] inicial 710.953 Mto [Ibf] (ftab. comp.) 1567.382 Peso [kg] (estimativa IBGE) 72.000 np (tab. 2-2) 0.800 Cp (tab. 2-2) 0.340 S [m²2] (tab. comp.) 12.960 S [m²2] (tab. comp.) 12.960 S [m²2] (tab. comp.) 12.960 Cd 0.036 Manobra 0.990 Ci (tab. 3-5) 0.432 C (tab. 3-5) 0.432 Ci (tab. 3-5) 0.432 Ci (tab. 3-4) -2.155 Vi used [kgf] 52.892 Wto [kg] instrumentos 28.438 Wt [kgf] 66.115 Mt used [kgf] 3.555 Or 2000f [kug/m³] 0.993 Veruz. [m/h] 240.000 Veruz. [m/h] 240.000 Veruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [kg] Orogarativa 722.789 Voruz, [ft/s] 218.723<	Reserva	0.250	Wto [kg] novo comp	710.953			
Wto [kg] inicial 710.953 Mto [lbf] (tab. comp.) 1567.382 Wto [N] 6972.065 Peso [kg] (estimativa IBGE) 72.000 np (tab. 2-2) 0.340 S [m^2] (tab. comp.) 12.960 S [m^2] (tab. comp.) 12.960 S [m^2] (tab. comp.) 12.960 S [m^2] (tab. a.3-5) 1.236 c (tab. 3-5) 1.236 c (tab. 3-5) 0.432 c (tab. 3-4) -2.155 b (tab. 3-4) 1.000 c (tab. 3-6) 0.830 c (tab. 3-6) 0.015 mog @7000ft [kg/m^3] 0.993 voruz. [km/h] 240.000 Vcruz. [tr/s] 218.723 vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [kg] novo comp 699.116	Dadas						
Mto [lbf] Taxi 0.997 Mto [lbf] (approximation of the second of the second operative op	Dados			Cá	alculos		
Wite [N] 6972.065 log Swet 2.616 Decolagem 0.998 Peso [kg] (estimativa IBGE) 72.000 f 2.893 Subida @ 3000ft 0.992 Op (tab. 2-2) 0.340 0.101 0.890 Subida @ 3000ft 0.992 Cdo 0.036 Manobra 0.992 0.902 Cdo 0.036 Manobra 0.992 Cdo 0.036 Manobra 0.992 Clo 0.890 Subida @ 3000ft 0.992 Cd 0.071 Manobra 0.992 Clo 0.890 Subida de 3000ft a 7000ft 0.992 Cd 0.071 Manobra 0.993 Cloruz.) 0.244 Tráfego 0.993 Cloruz.) 0.340 Cd(cruz.) 0.340 0.993 Cloruz.) 0.343 L/D cruz 6.346 Pouso 0.993 a (tab. 3-4) -2.155 W1/Wo 0.974 Mff 0.926 W1/Wo 0.974 Mff 0.926	Dados Wto [kg] inicial	710.953	_	Cá	alculos Aquecimento	0.995	
Peso [kg] (estimativa IBGE) 72.000 np (tab. 2-2) 0.800 Cp (tab. 2-2) 0.340 S [m^2] (tab. comp.) 12.960 S [m^2] (tab. comp.) 12.960 S [f*2] 139.500 C (tab. 3-5) 1.236 C (tab. 3-5) 0.432 C (tab. 3-5) 0.432 C (tab. 3-4) -2.155 b (tab. 3-4) 0.007 a (tab. 3-4) 1.000 e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro g S (Kg/m^3) 0.293 ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [n] 1.000 Reserva 0.250	Dados Wto [kg] inicial Mto [lbf] (tab. comp.)	710.953		Cá	ilculos Aquecimento Taxi	0.995	
np (tab. 2-2) 0.800 Cdo 0.036 Manobra 0.990 Cp (tab. 2-2) 0.340 Cl 0.890 Subida de 3000ft a 7000ft 0.992 S [m*2] (tab. comp.) 12.960 Cd 0.071 Manobra 0.990 S [m*2] (tab. comp.) 139.500 Cd 0.071 Manobra 0.990 c (tab. 3-5) 1.236 Cl(cruz.) 0.244 Tráfego 0.993 d (tab. 3-5) 0.432 Cl(cruz.) 0.244 Tráfego 0.993 c (tab. 3-5) 0.432 Cl(cruz.) 0.038 Descida 0.993 d (tab. 3-4) -2.155 W1/Wo 0.974 Mff 0.926 b (tab. 3-6) 0.830 Wf [kgf] 52.892 116.606 lbf w [kgf] 66.115 145.758 lbf MV [kgf] 145.758 lbf d (tab. comp.) 8.500 Wf [kgf] 3.555 7.837 lbf ro @ 7000ft [slug/ft^3] 0.902 Woe [kgf] 472.400 1041.464 lbf ro @ 7000ft [slug/ft^3] 0.902 We [kgf] tent 468.845 1033.627 lbf Veruz. [ft/s] 218.723	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N]	710.953 1567.382 6972.065	log Swet	Cá	ilculos Aquecimento Taxi Decolacem	0.995 0.997 0.998	
Cp (tab. 2-2) 0.340 S [m^2] (tab. comp.) 12.960 S [m^2] (tab. comp.) 12.960 Cd 0.071 Manobra 0.990 C(tab. 3-5) 1.236 C(tab. 3-5) 0.432 C(tab. 3-5) 0.432 C(tab. 3-4) 0.007 A (tab. 3-4) -2.155 b (tab. 3-4) 0.007 c (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 0.225 voruz. [m/s] 0.993 Voruz. [m/s] 240.000 Vcruz. [m/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE)	710.953 1567.382 6972.065 72.000	log Swet	Cá 2.616 2.893	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft	0.995 0.997 0.998 0.992	
S [m^2] (tab. comp.) 12.960 S [ft^2] 139.500 C (dab. 3-5) 1.236 d (tab. 3-5) 0.432 cf (tab. 3-5) 0.432 cf (tab. 3-4) 0.007 b (tab. 3-4) -2.155 b (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 0.225 Vcruz. [m/s] 66.667 Vcruz. [m/s] 66.667 Vcruz. [m/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [kg] comparativa 722.789 Uvto [kg] Nto-Graf. 11.837 Wto [kg] nvo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2)	710.953 1567.382 6972.065 72.000 0.800	log Swet f Cdo	Cá 2.616 2.893 0.036	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra	0.995 0.997 0.998 0.992 0.990	
S [ft^2] 139.500 c (tab. 3-5) 1.236 d (tab. 3-5) 0.432 cf (tab. 3-21) (avião limpo aerod.) 0.007 a (tab. 3-4) -2.155 b (tab. 3-4) -2.155 b (tab. 3-4) 1.000 e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro @ 7000ft [kg/m^3] 0.993 voruz. [m/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [m/s] 66.667 Vcruz. [m/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2)	710.953 1567.382 6972.065 72.000 0.800 0.340	log Swet f Cdo Cl	Cá 2.616 2.893 0.036 0.890	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft	0.995 0.997 0.998 0.992 0.990 0.992	
c (tab. 3-5) 1.236 d (tab. 3-5) 0.432 cf (tab. 3-21) (avião limpo aerod.) 0.007 a (tab. 3-4) -2.155 b (tab. 3-4) -2.155 b (tab. 3-4) 1.000 e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro _s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [kg/m^3] 0.993 vcruz. [m/s] 66.667 Vcruz. [m/s] 240.000 Vcruz. [m/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Uto [Kg] Nito Comp 11.837 Wto [Kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960	log Swet f Cdo Cl Cd	Cá 2.616 2.893 0.036 0.890 0.071	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra	0.995 0.997 0.998 0.992 0.990 0.990 0.992 0.990	
d (tab. 3-5) 0.432 cf (tab. 3-21) (avião limpo aerod.) 0.007 a (tab. 3-4) -2.155 b (tab. 3-4) -2.155 b (tab. 3-4) 1.000 e (tab. 3-6) 0.830 M (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro _s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [m/s] 66.667 Vcruz. [m/s] 66.667 Vcruz. [m/s] 240.000 Vcruz. [m/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2]	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500	log Swet f Cdo Cl Cd L/D máx	Cá 2.616 2.893 0.036 0.890 0.071 12.452	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993	
cf (tab. 3-21) (avião limpo aerod.) 0.007 a (tab. 3-4) -2.155 b (tab. 3-4) 1.000 e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [slug/ft^3] 0.993 Vcruz. [km/h] 240.000 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236	log Swet f Cdo Cl Cd L/D máx Cl(cruz.)	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.992 0.990 0.993 0.990	
a (tab. 3-4) -2.155 b (tab. 3-4) 1.000 e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5)	710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.)	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.990 0.993	
b (tab. 3-4) 1.000 e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 Vcruz. [km/h] 240.000 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.)	710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432 0.007	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346	Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993	
e (tab. 3-6) 0.830 A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974	Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.926	
A (tab. comp.) 8.500 delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 1.225 ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf]	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892	Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.996 lbf	
delta Cdo (tab. 3-6) 0.015 ro_s [Kg/m^3] 1.225 ro@ 7000ft [kg/m^3] 0.993 ro@ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf]	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff <u>116.606</u> 145.758	0.995 0.997 0.998 0.992 0.990 0.990 0.993 0.993 0.993 0.993 0.993 0.926 lbf	
ro_s [Kg/m^3] 1.225 ro@ 7000ft [kg/m^3] 0.993 ro@ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf]	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.926 bf lbf	
ro @ 7000ft [kg/m^3] 0.993 ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Uto [Kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6)	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] instrumentos	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.926 lbf	
ro @ 7000ft [slug/ft^3] 0.002 Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro_s [Kg/m^3]	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] instrumentos Woe [kgf]	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1041.464	0.995 0.997 0.998 0.992 0.990 0.993 0.990 0.993 0.993 0.993 0.993 0.993 0.995 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.9577 1.957 1.957 1.957 1.957 1.957 1.957 1.957 1.957	
Vcruz. [km/h] 240.000 Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Uto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Uto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [kg/m^3]	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 0.830 0.015 1.225 0.993	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wtog [kgf] Wtog [kgf]	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993 0.926 lbf lbf	
Vcruz. [m/s] 66.667 Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Uto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Uto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro_s [Kg/m^3] ro @ 7000ft [kg/m^3]	710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 0.830 0.015 1.225 0.993 0.002	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wto [kgf] Wto [kgf] Wto [kgf] Wto [kgf] Wto [kgf] Wto [kgf] Wto [kgf] Wto [kgf] Wto [kgf]	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Descida Pouso Mff 116.606 145.758 1041.464 7.837 1033.627	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993 0.926 bf bf bf	
Vcruz. [ft/s] 218.723 Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Uto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro_s [Kg/m^3] ro @ 7000ft [kg/m^3] vcruz. [km/h]	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 0.830 0.015 1.225 0.993 0.002 240.000	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wtof [kgf] Wtof [kgf] Wtof [kgf] Wtof [kgf] Wtof [kgf]	Cá 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Descida Pouso Mff 116.606 145.758 1041.464 7.837 1033.627	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.993 0.993 0.926 lbf lbf	
Vautonomia [mph] 149.129 E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [kg/m^3] ro @ 7000ft [slug/ft^3] Vcruz. [km/h] Vcruz. [m/s]	710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225 0.993 0.002 240.000 66.667	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [litros] W[kgf] instrumentos Woe [kgf] Wtof [kgf] Wto [kgf] Wto [kgf] tent	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1041.464 7.837 1033.627	0.995 0.997 0.998 0.992 0.990 0.992 0.990 0.993 0.993 0.926 lbf lbf lbf	
E [h] 1.000 Reserva 0.250 Wto [Kg] comparativa 722.789 Diferença[kg] Wto-Graf. 11.837 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [kg/m^3] vcruz. [km/h] Vcruz. [km/h] Vcruz. [m/s] Vcruz. [ft/s]	710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225 0.993 0.002 240.000 66.667 218.723	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wtof [kgf] Wtof [kgf] We [kgf] tent	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	Aquecimento Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1041.464 7.837 1033.627	0.995 0.997 0.998 0.992 0.990 0.992 0.993 0.993 0.993 0.926 lbf lbf lbf	
Reserva 0.250 Wto [Kg] comparativa 722.789 1593.478 lbf Diferença[kg] Wto-Graf. 11.837 <td< td=""><td>Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [slug/ft^3] Vcruz. [km/h] Vcruz. [km/h] Vcruz. [ft/s] Vautonomia [mph]</td><td>710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225 0.993 0.002 240.000 66.667 218.723 149.129</td><td>log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wtof [kgf] Wtof [kgf] We [kgf] tent</td><td>Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845</td><td>Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1033.627 1033.627</td><td>0.995 0.997 0.998 0.992 0.990 0.993 0.993 0.993 0.993 0.926 lbf lbf</td></td<>	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [m^2] (tab. comp.) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [slug/ft^3] Vcruz. [km/h] Vcruz. [km/h] Vcruz. [ft/s] Vautonomia [mph]	710.953 1567.382 6972.065 72.000 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225 0.993 0.002 240.000 66.667 218.723 149.129	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wtof [kgf] Wtof [kgf] We [kgf] tent	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1033.627 1033.627	0.995 0.997 0.998 0.992 0.990 0.993 0.993 0.993 0.993 0.926 lbf lbf	
Diferença[kg] Wto-Graf. 11.837 Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [kg/m^3] ro @ 7000ft [slug/ft^3] Vcruz. [km/h] Vcruz. [ft/s] Vautonomia [mph] E [h]	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225 0.002 240.000 66.667 218.723 149.129 1.000	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wtof [kgf] Wtof [kgf] We [kgf] tent	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1041.464 7.837 1033.627	0.995 0.997 0.998 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.994 lbf lbf	
Wto [kg] novo comp 699.116	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [ff^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [klg/m^3] ro @ 7000ft [slug/ft^3] Vcruz. [km/h] Vcruz. [ft/s] Vautonomia [mph] E [h] Reserva	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 8.500 0.015 1.225 0.002 240.000 66.667 218.723 149.129 1.000 0.250	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf [kgf] Wto [kgf] tent	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845	ilculos Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida PPouso Mff 116.606 145.758 1033.627 1033.627 1033.627	0.995 0.997 0.998 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.994 lbf lbf	
	Dados Wto [kg] inicial Mto [lbf] (tab. comp.) Wto [N] Peso [kg] (estimativa IBGE) np (tab. 2-2) Cp (tab. 2-2) S [ft^2] c (tab. 3-5) d (tab. 3-5) cf (tab. 3-21) (avião limpo aerod.) a (tab. 3-4) b (tab. 3-4) e (tab. 3-6) A (tab. comp.) delta Cdo (tab. 3-6) ro @ 7000ft [kg/m^3] ro @ 7000ft [slug/ft^3] Vcruz. [km/h] Vcruz. [m/s] Vautonomia [mph] E [h] Reserva	710.953 1567.382 6972.065 72.000 0.800 0.340 12.960 139.500 1.236 0.432 0.007 -2.155 1.000 0.830 0.015 1.225 0.993 0.002 240.000 66.667 218.723 149.129 1.000 0.250	log Swet f Cdo Cl Cd L/D máx Cl(cruz.) Cd(cruz.) L/D cruz W1/Wo Wf used [kgf] Wf [kgf] Wf [kgf] Wf[kgf] instrumentos Woe [kgf] Wto [kgf] Wto [kgf] tent Wto [kgf] tent Uto [kgf] tent	Ca 2.616 2.893 0.036 0.890 0.071 12.452 0.244 0.038 6.346 0.974 52.892 66.115 91.826 28.438 472.400 3.555 468.845 468.845 722.789 11.837	Aquecimento Taxi Decolagem Subida @ 3000ft Manobra Subida de 3000ft a 7000ft Manobra Descida Tráfego Descida Pouso Mff 116.606 145.758 1041.464 7.837 1033.627 1033.627 1033.627	0.995 0.997 0.998 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.994 lbf lbf	

Resumo	
Wto [kg] inicial	710.953
Woe [kgf]	472.400
Wf used [kgf]	52.892
Wf [kgf]	66.115

3.1.3 Missão 2

3.1.3.1 Alcance

Dados			C	álculos		
					Aquecimento	0.995
Wto [kg] inicial	750.000		log Swet	2.626	Taxi	0.997
Mto [lbf] (tab. comp.)	1653.467		f	2.960	Decolagem	0.998
Wto [N]	7354.988		Cdo	0.036	Subida	0.992
Peso [kg] (padrão)	72.000		CI	0.896	Cruzeiro	0.924
np (tab. 2-2)	0.800		Cd	0.072	Descida	0.993
Cp (tab. 2-2=>NÃO) ISCOLD!	0.340		L/D máx	12.369	Pouso	0.993
S [m^2] (tab. comp.)	12.960		Cl(cruz.)	0.282	Mff	0.894
S [ft^2]	139.500		Cd(cruz.)	0.040		
c (tab. 3-5)	1.236		L/D cruz	7.090		
d (tab. 3-5)	0.432		W1/Wo	0.924		
cf (tab. 3-21) (avião limpo aerod.)	0.007		Wf used [kgf]	79.172	174.545	lbf
a (tab. 3-4)	-2.155		Wf [kgf]	98.965	218.181	lbf
b (tab. 3-4)	1.000		Wf [litros]	137.452		
e (tab. 3-6)	0.830		W[kgf] instrumentos	30.000		
A (tab. comp.)	8.500		Woe [kgf]	477.035	1051.681	lbf
delta Cdo (tab. 3-6)	0.015		Wtof [kgf]	3.750	8.267	lbf
ro_s [Kg/m^3]	1.225		We [kgf] tent	473.285	1043.414	lbf
ro @ 10000ft [kg/m^3]	0.905					
ro @ 10000ft [slug/ft^3]	0.002		b [m] envergadura	10.496		
Vcruz. [km/h]	240.000		CargaAlar(W/S)[kg/m^2]	57.870		
Vcruz. [m/s]	66.667		CargaAlar(W/S)[lbf/ft^2]	11.853		
Vcruz. [ft/s]	218.723					
Vautonomia [mph]	149.129					
R [km]	800.000		Wto [Kg] comparativa	731.529	1612.744	lbf
R [milhas terrestres]	497.097		Diferença[kg] Wto-Graf.	18.471		
Reserva	0.250		Wto [kg] novo comp	768.471		

Resumo	
Wto [kg] inicial	750.000
Woe [kgf]	477.035
Wf used [kgf]	79.170
Wf [kgf]	98.970

3.1.3.2 Autonomia

Dados			Cálculos		
Wto [kgf] inicial	750	log Swet	2.626	Aquecimento	0.995
Mto [lbf] (tab. comp.)	1653.467	f	2.960	Taxi	0.997
Wto [N]	7354.988	Cdo	0.036	Decolagem	0.998
Peso [kg] (estimativa segundo IBGE)	72.000	CI	0.896	Subida	0.992
np (tab. 2-2)	0.800	Cd	0.072	Cruzeiro	0.931
Cp (tab. 2-2)	0.340	L/D máx	12.369	Descida	0.993
S [m^2] (tab. comp.)	12.960	Cl(cruz.)	0.282	Pouso	0.993
S [ft^2]	139.500	Cd(cruz.)	0.040	Mff	0.902
c (tab. 3-5)	1.236	L/D cruz	7.090		
d (tab. 3-5)	0.432	W1/Wo	0.931		
cf (tab. 3-21) (avião limpo aerod.)	0.007	Wf used [kgf]	73.821	162.747	lbf
a (tab. 3-4)	-2.155	Wf [kgf]	92.276	203.433	lbf
b (tab. 3-4)	1.000	Wf [litros]	128.161		
e (tab. 3-6)	0.830	W[kgf] instrumentos	30.000		
A (tab. comp.)	8.500	Woe [kgf]	483.724	1066.429	lbf
delta Cdo (tab. 3-6)	0.015	Wtof [kgf]	3.750	8.267	lbf
ro_s [Kg/m^3]	1.225	We [kgf] tent	479.974	1058.162	lbf
ro @ 10000ft [kg/m^3]	0.905				
ro @ 10000ft [slug/ft^3]	0.002				
Vcruz. [km/h]	240.000				
Vcruz. [m/s]	66.667				
Vcruz. [ft/s]	218.723				
Vautonomia [mph]	149.129	Wto [Kgf] comparativa	744.697	1641.776	lbf
E [h]	3.000	Diferença[kg] Wto-Graf.	5.303		
Reserva	0.25	Wto [kg] novo comp	755.303		

Resumo		
Wto [kg] inicial	750	
Woe [kgf]	483.72	
Wf used [kgf]	73.82	
Wf [kgf]	92.28	

3.2 Diagrama de Restrição W/P x W/S

3.2.1 Decolagem

$$S_{TOG} = 4,9.TOP23 + 0,009.(TOP23)^2$$

 $S_{TOG} = 500m = 1640, 4 ft$

 $1640,4 = 4,9.TOP23 + 0,009.(TOP23)^2$

$$TOP23 = 234,1hp / ft^2$$

$$TOP23 = \frac{(W/S)_{TO}.(W/P)_{TO}}{\sigma.C_{L_{máx_{to}}}}$$

$$C_{C_{MAX_{TO}}} = 1,3-1,9$$
 $\sigma = 1$

$$(W/S)_{TO}.(W/P)_{TO} = TOP23.\sigma.C_{L_{máx_{TO}}}$$

$$(W / P)_{TO} = \frac{TOP23.\sigma.C_{L_{máx_{TO}}}}{(W / S)_{TO}}$$

$$(W / P)_{TO} = \frac{234, 1.1.C_{L_{máxTO}}}{(W / S)_{TO}}$$

$$(W / P)_{TO} = \frac{234, 1.C_{L_{máx_{TO}}}}{(W / S)_{TO}}$$

	Clto		
W/S	1,3	1,6	1,9
1	304,33	374,56	444,79
5	60,87	74,91	88,96
10	30,43	37,46	44,48
15	20,29	24,97	29,65
20	15,22	18,73	22,24
25	12,17	14,98	17,79
30	10,14	12,49	14,83
35	8,70	10,70	12,71
40	7,61	9,36	11,12
45	6,76	8,32	9,88
50	6,09	7,49	8,90
55	5,53	6,81	8,09

3.2.2 Pouso

$$S_{LG} = 0,265.V_{SL}^{2}$$

 $S_{LG} = 500m = 1640, 4ft$

$$V_{SL}^{2} = \frac{S_{LG}}{0,265}$$

$$V_{SL} = 78,7 Knots$$

$$V_{SL} = 132,8 \, ft$$

$$\rho_{niveldomar} = 0,002378 \, slug \, / \, ft^3$$

Mas nas especificações desse treinador é exigido uma velocidade de estol de 45 Kts, que é equivale a 75,95 ft/s.

$$V_{S} = \left\{ \frac{2.(W/S)}{\rho.C_{L_{max}}} \right\}^{\frac{1}{2}}$$

$$W/S = \frac{V_S^2 \cdot \rho \cdot C_{L_{máx}}}{2}$$

$$W / S = \frac{75,95^2.0,002378.C_{L_{max}}}{2}$$

CIL	1,7	1,9	2,2
W/S	11,66	13,03	15,09

3.2.3 Velocidade de Cruzeiro

$$V_{CR} = 160 kM / H$$

 $V_{CR} = 99,4M/H$ a 75% de potência do motor

IP = 0,95 para 10000ft Fig. 3.29
$$\sigma = 0,7386 slug / ft^3$$

$$IP = \left\{\frac{(W/S)}{\sigma.(W/P)}\right\}^{\frac{1}{3}}$$

$$W/P = \frac{(W/S)}{IP^3.\sigma}$$

$$W / P = \frac{(W / S)}{0.95^3 \cdot 0.7386}$$

Cruising Speed			
W/S	W/(0,75*P)	W/P	
0	0,00	0,00	
10	15,79	11,85	
20	31,59	23,69	
30	47,38	35,54	
40	63,17	47,38	
50	78,97	59,23	
60	94,76	71,07	

W / S = 1,5791(W / P)

3.2.4 Razão de Subida

3.2.4.1 Segundo FAR 23-65 tem-se:

 $RC_{\min} = 300 \, ft \,/\, \min$ CGR = 1:12

RC = 33000RCP

$$RCP = \frac{RC}{33000}$$

$$RCP = \frac{300}{33000}$$

$$RCP = 0,0091 \qquad \qquad \sigma = 1$$

$$C_{D0} = 0,03746 \text{ sem considerar flap} \qquad \qquad A = 10$$

$$e = 0,83$$

$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{max} = 1,345.\frac{(A.e)^{\frac{3}{4}}}{C_{D0}^{\frac{1}{4}}}$$

$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{max} = 1,345.\frac{(10.0,83)^{\frac{3}{4}}}{0,03746^{\frac{1}{4}}}$$
$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{max} = 13,346$$

$$RCP = \left[\frac{\eta_{P}}{(W/P)} - \frac{(W/S)^{\frac{1}{2}}}{19 \cdot \left(C_{L}^{\frac{3}{2}}/C_{D}\right)\sigma^{\frac{1}{2}}}\right]$$

$$W / P = \frac{19 \cdot \left(C_{L}^{3/2} / C_{D}\right) \sigma^{\frac{1}{2}} \cdot \eta_{P}}{RCP \cdot 19 \cdot \left(C_{L}^{3/2} / C_{D}\right) \sigma^{\frac{1}{2}} + \left(W / S\right)^{\frac{1}{2}}}$$

$$W / P = \frac{19.13,3462.1^{\frac{1}{2}}.0,8}{0,0091.19.13,3462.1^{\frac{1}{2}} + (W / S)^{\frac{1}{2}}}$$

Clmaxto	L/D	(D/L)
1,1	9,963	0,1
1,4	8,996	0,111
1,7	8,031	0,245

	FAR 23.65 RC				
W/S	W/P cont.	W/P to			
5	44,65	40,59			
10	37,09	33,72			
20	29,92	27,20			
30	26,06	23,69			
40	23,50	21,36			
50	21,63	19,66			
55	20,86	18,97			

$$CGRP = \frac{18,97.\eta_{P}.\sigma^{\frac{1}{2}}}{(W / P).(W / S)^{\frac{1}{2}}}$$

$$W / P = \frac{18,97.\eta_P.\sigma^{\frac{1}{2}}}{CGRP.(W / S)^{\frac{1}{2}}}$$

$$CGRP = \frac{CGR + (L/D)^{-1}}{C_L^{\frac{1}{2}}}$$

$$W / P = \frac{18,97.\eta_P . \sigma^{\frac{1}{2}} . C_L \frac{1}{2}}{\left(CGR + (L/D)^{-1}\right) (W/S)^{\frac{1}{2}}}$$

$$W / P = \frac{18,97.0,8.1^{\frac{1}{2}}.1,1\frac{1}{2}}{(0,083+0,082)(W/S)^{\frac{1}{2}}}$$

	FAR 23.65 CGR				
W/S	W/P CI=1,3	W/P CI=1,6	W/P CI=1,9		
5	42,91	46,59	48,80		
10	30,34	32,94	34,51		
20	21,45	23,29	24,40		
30	17,52	19,02	19,92		
40	15,17	16,47	17,25		
50	13,57	14,73	15,43		
CI	1,1	1,4	1,7		

3.2.4.2 Segundo FAR 23-77 tem-se:

 $RC_{\min} = 300 \, ft \, / \min$ CGR = 1:30RC = 33000RCP

 $RCP = \frac{RC}{33000}$

$$RCP = \frac{300}{33000}$$

RCP = 0,0091

$\sigma = 1$ $C_{D0} = 0,03746$ sem considerar flap

```
A = 10
e = 0.83
```

$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{max} = 1,345. \frac{(A.e)^{\frac{3}{4}}}{C_{D0}^{\frac{1}{4}}}$$
$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{max} = 1,345. \frac{(10.0,83)^{\frac{3}{4}}}{0,03746^{\frac{1}{4}}}$$
$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{max} = 13,346$$
$$RCP = \left[\frac{\eta_P}{(W/P)} - \frac{(W/S)^{\frac{1}{2}}}{19.(C_L^{\frac{3}{2}}/C_D)\sigma^{\frac{1}{2}}}\right]$$
$$W/P = \frac{19.(C_L^{\frac{3}{2}}/C_D)\sigma^{\frac{1}{2}}.\eta_P}{RCP.19.(C_L^{\frac{3}{2}}/C_D)\sigma^{\frac{1}{2}}.(W/S)^{\frac{1}{2}}}$$

$$W / P = \frac{19.13,346.1^{\frac{1}{2}}.0,8}{0,0091.19.13,346.1^{\frac{1}{2}} + (W / S)^{\frac{1}{2}}}$$

Clmaxto	L/D	(D/L)
1,1	9,963	0,1
1,4	8,996	0,111
1,7	8,031	0,245

$$CGRP = \frac{18,97.\eta_{P.}\sigma^{\frac{1}{2}}}{(W / P).(W / S)^{\frac{1}{2}}}$$

$$W / P = \frac{18,97.\eta_P.\sigma^{\frac{1}{2}}}{CGRP.(W/S)^{\frac{1}{2}}}$$

$$CGRP = \frac{CGR + (L/D)^{-1}}{C_L^{\frac{1}{2}}}$$

$$W / P = \frac{18,97.\eta_P .\sigma^{\frac{1}{2}}.C_L \frac{1}{2}}{\left(CGR + (L/D)^{-1}\right)(W/S)^{\frac{1}{2}}}$$

$$W / P = \frac{18,97.0,8.1^{\frac{1}{2}}.1,1\frac{1}{2}}{(0,033+0,082)(W / S)^{\frac{1}{2}}}$$

FAR 23.77 CGR				
W/S	W/P CI=1,3	W/P CI=1,6	W/P CI=1,9	
5	61,42	65,62	67,37	
10	43,43	46,40	47,64	
20	30,71	32,81	33,69	
30	25,08	26,79	27,51	
40	21,72	23,20	23,82	
50	19,42	20,75	21,31	
CI	1,1	1,4	1,7	

3.2.5 Tempo de Subida

$$h_{asb} = 17000 \, ft$$

$$RC_{O} = \left(\frac{h_{abs}}{tc_{1}}\right) \cdot \ln\left(1 - \frac{h}{h_{abs}}\right)^{-1}$$

$$RC_{O} = \left(\frac{17000}{35_{1}}\right) \cdot \ln\left(1 - \frac{10000}{17000}\right)^{-1}$$

$$RC_o = 430,97$$

$$RCP_o = \frac{RC_o}{33000}$$

$$RCP_o = \frac{430,97}{33000}$$

$$RCP_{o} = 0,01306$$

$$RC = RC_o \cdot (1 - h/h_{abs})$$

$$RC = 430, 7.(1 - 10000/17000)$$

$$RC = 177,35$$

$$RC = 33000RCP$$

$$RCP = \frac{RC}{33000}$$

$$RCP = \frac{177,35}{33000}$$

$$RCP = 0,0054$$

$$\sigma = 1$$

 $C_{D0} = 0,03746$ sem considerar flap

A = 10

e = 0,83

$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{máx} = 1,345.\frac{(A.e)^{\frac{3}{4}}}{C_{D0}^{\frac{1}{4}}}$$

$$\left(\frac{C_L^{\frac{3}{2}}}{C_D}\right)_{máx} = 1,345.\frac{(10.0,83)^{\frac{3}{4}}}{0,03746^{\frac{1}{4}}}$$

$$\left(\frac{C_L^{3/2}}{C_D}\right)_{max} = 13,346$$

$$RCP = \left[\frac{\eta_{P}}{(W/P)} - \frac{(W/S)^{\frac{1}{2}}}{19 \cdot \left(C_{L}^{\frac{3}{2}}/C_{D}\right)\sigma^{\frac{1}{2}}}\right]$$

$$W / P = \frac{19 \left(C_{L}^{3/2} / C_{D} \right) \sigma^{1/2} . \eta_{P}}{RCP.19 \left(C_{L}^{3/2} / C_{D} \right) \sigma^{1/2} + \left(W / S \right)^{1/2}}$$

$$W / P = \frac{19.13,346.1^{\frac{1}{2}}.0,8}{0,0131.19.13,346.1^{\frac{1}{2}} + (W / S)^{\frac{1}{2}}}$$

Tempo de subida (RCo)				
W/S	W/P cont.	W/P to		
5	36,57	33,24		
10	31,34	28,49		
20	26,06	23,69		
30	23,08	20,98		
40	21,05	19,14		
50	19,54	17,76		

3.2.6 Diagrama de Restrição

Compilando os dados provenientes dos cálculos das cinco seções anteriores constrói-se o diagrama de restrição apresentado na Fig.3.2. Cabe à equipe de projeto selecionar o ponto de projeto da aeronave de modo coerente à lista de prioridades. Assim o ponto de projeto destacado na Fig.3.2 aponta a potência requerida para a aeronave BRATI-01 entre outras coisas, como será detalhado nas seções subseqüentes.

FIGURA 3.2 - Diagrama de Restrição da Aeronave BRATI-01

3.2.7 Parâmetros Aerodinâmicos:

Uma informação crucial para a escolha do perfil da asa é retirada do diagrama de restrição da Fig.3.2.1. De acordo com o ponto de projeto selecionado para a aeronave BRATI-01 o CL máx de pouso deve ser 1,7.

3.2.7.1 Seleção do perfil da Asa:

Observado que uma das prioridades do treinador BRATI-01 é possuir baixo custo de operação, o perfil será selecionado dentre aqueles da família NACA série 6, que entre outras características possuem um baixíssimo coeficiente de arrasto. O primeiro passo para escolha do perfil da asa trata do cálculo do C_L de projeto. Este será determinado em função da velocidade de cruzeiro de acordo com a equação abaixo como apresentada por Pazmany (1966):

$$C_L = \frac{390 \cdot W}{S_W \cdot V^2}$$

onde: W = 1653 lbf ~ peso máximo de decolagem

 $Sw = 139,5 \text{ ft}2 \sim \text{área alar}$

 $V = 149,1 \text{ mph} \sim \text{velocidade de cruzeiro}$

Portanto,

 $C_L = 0,2 \sim \text{coeficiente de sustentação de projeto}$

O próximo passo compreende em fazer uma pré-escolha do perfil e observar se o mesmo atende ao C_L de projeto. Sendo assim, será escolhido o perfil NACA 64₂215 que além de atender ao C_L de projeto apresenta estol suave. Este perfil também possui espessura máxima a 40% da corda média aerodinâmica - adequado ao posicionamento da longarina da asa no interior da mesma. A posição da espessura máxima também está em conformidade com o passeio de CG. Outra característica desse perfil, refere-se à sua espessura relativa (t /c) de 15% que é adequada para o posicionamento do tanque integral.

O terceiro passo compete em ler o C_L máx bidimensional desse perfil na curva $C_L X \alpha$ disponível no Abbott (1958) e obter o ângulo de ataque do mesmo.

FIGURA 3.3 – Gráfico $C_L \ge \alpha$

 $C_L \max = 1.5 \Rightarrow \alpha \max = 13^\circ$

Sendo assim será empregado o método Multhopp na determinação do C_L máx tridimensional observado o ângulo de ataque máximo de 13°. A distribuição de sustentação é apresentada na Fig.3.3.

FIGURA 3.4 – Distribuição de Sustentação Obtida por Multhopp.

 $C_L max global = 1,34$

Serão empregados flapes como dispositivos de hiper-sustentação visto que o C_L máx global não foi suficiente para atender à reta $C_{LL} = 1,7$ destacada na Fig.3.2.

3.2.7.2 Dispositivos de Hiper-sustentação:

No projeto dos flapes será empregado o procedimento apresentado por Pazmany (1966). Adotando a corda nos flapes de 315 mm, ângulo de deflexão flapes de 40° e consultando as figuras 16, 17, 18 e 19 da referencia [III]. Tem-se:

$$\frac{C_f}{C} = \frac{315 \text{ mm}}{1260 \text{ mm}} = 0,25$$
$$\lambda_1 = 0,6$$
$$\lambda_2 = 1,27$$
$$\frac{F(A)}{F(6)} = 1,08$$
Logo:

$$\Delta C_{L} = \frac{F(A)}{F(6)} \cdot \lambda_{1} \cdot \lambda_{2}$$

$$\Delta C_L = 1,08 \bullet 0,6 \bullet 1,27 = 0,82$$

Corrigindo para a razão de envergaduras entre o flape e a asa tem-se:

 $\frac{b_f}{b} = \frac{4490 \ mm}{10500 \ mm} = 0,428$

$$\lambda_3 = 0,46$$

 $\Delta C_L = 0,82 \cdot 0,46 = 0,37$

Logo o novo C_L máx global será:

$$C_L máx = 1,34 + 0,37$$

 $C_L máx = 1,71$

Assim está atendido à restrição obtida no diagrama da Fig.3.2.

3.2.8 Escolha do grupo moto-propulsor:

Uma vez definido o ponto de projeto na Fig.3.2, obtém-se da razão W/P no eixo das ordenadas a potência requerida que será de 115 CV. Assim será empregado na aeronave BRATI-01 um motor Textron Lycoming O-235-L quatro cilindros planos (118 HP a 2800 rpm).

4 PROJETO PRELIMINAR

Aqui demonstra-se as diversas fases de desenvolvimento do projeto preliminar do avião, discuti-se itens como o estudo ergonômico e posicionamento do motor, a escolha da asa em sua forma e geometria, empenagens, trens de pouso, superfícies de controle e hiper-sustentação, etc. Este trabalho é finalizado com a apresentação das três vistas do projeto do avião proposto assim como uma exposição do modelo matemático tridimensional preliminar.

4.1 Configuração Interna

No estudo ergonômico e configuração interna da cabine utilizou-se a técnica de utilização de manequins bidimensionais e posteriormente tridimensionais com porcentagens variando entre 60% e 99%, ou seja, manequins que têm alturas aproximadamente entre 1,65m e 2,00m, isto abrange uma grande faixa do público alvo e sua conseqüente utilização por diversos padrões de estaturas. Procurou-se adequar a posição do piloto e aluno dentro da cabine aos melhores ângulos de conforto possíveis, isto para evitar um vôo exaustivo, pois como se trata de um avião para treinos não podemos ter um avião "ruim" de vôo devendo o mesmo deve oferecer boas condições ergonômicas de vôo. Seguindo o estudo ergonômico proposto por Barros [I], procurou-se adequar os principais ângulos do corpo humano à uma condição dentro da proposta oferecida pelo autor, podemos verificar o estudo ergonômico na Figura 4.1 onde a proposta das condições ótimas segundo Barros é plenamente satisfeita.

Figura 4.1 – Estudo Ergonômico para Assentos de Aeronaves (Barros [I]).

Ainda sobre as dimensões da cabine, foi visada uma boa ergonomia, sem contanto aumentar demasiadamente a área frontal do avião, o que prejudicaria o desempenho do mesmo. Portanto, durante a fase de projeto preliminar, buscou-se na literatura e em tabelas comparativas referências para tais dimensões, tanto na altura quanto na largura, e a escolha final, depois de utilizarmos um manequim tridimensional com as mesmas proporções do bidimensional, foi por uma cabine de 1,072 metros de altura por 1,052 metros de largura. Na disposição dos pedais, manche, bancos e demais comandos, foram adotadas as sugestões de Pazmany [III], e que podem ser vistas nas figuras 4.2, 4.3 e 4.4. Com isto pudemos modelar a cabine com duas dimensões otimizadas para oferecer um bom conforto com uma mínima área frontal.

Quanto às dimensões do vão do motor, buscou-se o melhor aproveitamento do espaço, também para não ferir a melhor condição Aerodinâmica de menor área frontal; para isto foi utilizado o desenho em duas vistas de um motor previamente escolhido de uma avião retirado da tabela comparativa (motor Continental O-200 de 100HP do Cessna A150L), e posteriormente seu modelamento matemático em 3D para otimizar as superfícies externas, buscando a suavidade da carenagem em torno do motor, foi ainda feito um pré-estudo da posição dos escapamentos (ver fig. 5.1). O posicionamento do motor,

assim como a parede de fogo e uma prévia do berço do motor também foram de vital importância, pois já podemos ter uma idéia a respeito da estrutura necessária e alguns detalhes manutenção do grupo motopropulsor, esta prévia pode ser vista nas figuras 4.3 e 4.4. Também foi levada em conta uma proposta de refrigeração do motor, buscando o posicionamento das mesmas à frente dos cilindros do motor, alinhadas com os mesmos e uma superfície ligeiramente saliente; também foi levada em consideração a distância adequada entre a hélice e as referidas entradas. Tais considerações podem ser vistas nas figuras 4.2 e 4.4.

Figura 4.2 – Configuração Interna da Cabine Vista Isométrica

Figura 4.3 – Dimensões da Cabine e Instalação do Motor – Vista de Planta

Figura 4.4 - Dimensões da Cabine e Instalação do Motor - Vista Lateral

4.2 Configuração Externa

4.2.1 Asa

No projeto preliminar foram seguidos vários procedimentos baseados em literatura e também em dados da tabela comparativa. Após a definição da estimativa inicial de peso e definição da carga alar, pudemos projetar a asa de forma a respeitar algumas grandezas já pré-fixadas nestes cálculos, grandezas estas como a razão de aspecto, área alar e envergadura. Inicialmente optou-se por uma forma em planta reto-trapezoidal, escolha esta baseada em aspectos construtivos e de estol preferencial na raiz da asa. Posteriormente a forma em planta foi modificada devido a razões estéticas e aerodinâmicas (diminuição do arrasto); também a área alar foi reduzida pelas mesmas razões, porém sem ferir as condições do projeto da carga alar e da estimativa prévia do peso da aeronave, que tiveram de ser recalculadas após esta modificação. Como a forma trapezoidal oferece um estol que se inicia preferencialmente na região dos ailerons, uma torção geométrica de 2º (fig. 4.5) da asa foi proposta para sanar tal perigo da perda do controle da aeronave em vôo. Para forçarmos a região de ailerons estolar após o estol na raiz, colocamos um ângulo de ataque na raiz da asa ligeiramente superior, para tal foi proposto um ângulo de incidência da raiz da asa com a fuselagem de 3º, para que possamos ter, em vôo reto e nivelado ainda um ângulo de incidência de 1º entre a ponta da asa e a fuselagem. Foram definidas as larguras do aileron em 20% da CMA e do flape em 25% da CMA (fig. 4.5); o comprimento do flape foi baseado no cálculo da hiper-sustentação devido à presença deste. O comprimento do aileron foi definido como o restante da semi-envergadura da asa. Estes procedimentos podem ser verificados nas figuras 4.5 e 4.6. Ainda no projeto do dispositivo de hiper-sustentação, um ângulo de deflexão de 40° foi escolhido, como pode ser visto na fig. 4.5.

Outro fator importante no projeto da asa foi a posição e forma da longarina. Optou-se por localizarmos a longarina sempre na região de maior espessura do perfil (fig. 4.5), assim teremos uma longarina reta na parte superior e com uma diminuição gradativa de sua espessura à medida que caminhamos da raiz para a ponta da asa seguindo o afilamento; isto facilita o ganho de peso, melhorando o aspecto estrutural e também nos dá um diedro natural, necessário a uma melhor estabilidade e controle do avião. Porém

somente esta diminuição da espessura não foi suficiente para obtermos o diedro esperado, tendo que ser efetuado uma ligeira torção na longarina. Ainda devido a escolha da posição da longarina, obtivemos um enflechamento ligeiramente negativo de 0.7° (fig. 4.5), o que não chega a afetar muito as relações com a estabilidade e controle da aeronave.

Outra decisão que foi tomada diz respeito à forma construtiva da asa, onde optou-se por colar os painéis de revestimento externo da asa na longarina e nas nervuras, o objetivo é obtermos uma superfície de escoamento do fluido extremamente lisa, condição esta necessária para a seleção de perfis laminares, como foi feito neste projeto com a escolha do perfil NACA 64₂215 e descrito anteriormente.

O afilamento foi escolhido como sendo 0,618 seguindo o número "áureo" que concilia a perfeição estética e perfeição aerodinâmica; tal descrição e a solução da equação que gera este valor perfeito podem ser vistos em Barros [I]. Na figura 4.5 podemos ainda verificar o procedimento para a determinação da Corda Média Aerodinâmica, ou simplesmente denominada CMA.

FIGURA 4.5 (1) - Características da Asa

FIGURA 4.5 (2) - Características da Asa

4.2.2 Cauda

Além de preocupações com volumes de cauda adequados, o que será descrito adiante, uma importante consideração foi feita acerca da prevenção do chamado "*deep stall*", que seria uma condição muito desfavorável para um avião treinador. Portanto foi seguido o método proposto por Pzmany [III], onde depois de traçadas duas linhas imaginárias com ângulos de 45° e 60° em relação à CMA (ver figura 4.6), não devemos ter muito mais que 50% de área do leme sombreada . Como pode ser visto nesta figura tal condição é satisfeita, onde temos uma área livre de 49%. Podemos ainda ver nesta figura as demais características das empenagens com as dimensões da empenagem horizontal, proporção dos profundores e proporções do leme. Podemos também verificar a determinação da CMA da empenagem horizontal.

Figura 4.6 – Desenho Esquemático da Empenagem

4.2.2.1 Volumes de Cauda

Para os volumes de cauda foram utilizadas as equações contidas na literatura e principalmente as idéias de "faixas" de tolerância propostas por Barros [I] e Pazmany [III]. Nestes cálculos outras dimensões como envergadura são levadas em consideração, tendo portanto de já estarem bem definidas. Segue abaixo as equações utilizadas:

4.2.2.1.1 Volume de cauda Horizontal

$$\overline{V}_h = \frac{S_h \cdot L_h}{S_w \cdot \overline{c}}$$

4.2.2.1.2 Volume de cauda Vertical

$$\overline{V}_{v} = \frac{S_{v} \cdot L_{v}}{S_{w} \cdot b}$$

Na figura 4.7 podemos verificar a determinação dos braços Lh e Lv, utilizados, juntamente com a área da empenagem vertical Sv e empenagem horizontal Sh no calculo dos volumes de cauda.

Figura 4.7 – Determinação dos Braços *Lh* e *Lv*

Conforme descrito na lista de prioridades, não nos preocupamos em poupar volume de cauda em detrimento da deficiência de controle, portanto optou-se por um volume de cauda horizontal e vertical de médio a elevado dentro de uma certa faixa proposta pelos autores citados, tais valores foram definidos como sendo 0,637 (variação de 0,34 a 0,692 em Pazmany) para o volume horizontal e 0,036 (variação de 0,022 a 0,045 em Pazmany) para o volume vertical, satisfazendo as boas condições de controle.

4.2.3 Trem de pouso

Como temos a restrição do avião sair de fábrica com uma das duas opções de trem de pouso, ou convencional ou triciclo, optamos por projetar um trem central único e fixá-lo na longarina da asa. Para mudarmos a configuração basta fazermos um giro de 180° em trono de seu eixo de fixação, tal procedimento pode ser visto na fig. 4.8. Pazmany [III] sugere um estudo para o posicionamento do trem de pouso para as duas condições de projeto, na fig. 4.8 podemos verificar este estudo e afirmarmos que a posição escolhida supera as restrições propostas pelo autor, tanto longitudinalmente quanto transversalmente.

Figura 4.8 – Espelhamento do trem de pouso

A folga entre a fuselagem e o chão, segundo a norma CAR 3.422 deve ser de, no mínimo 7 polegadas (178mm) para a configuração triciclo e 9 polegadas (229mm) para a configuração convencional, como podemos ver na figura 4.9, tais requerimentos são satisfeitos. Além disto uma folga de duas polegadas deve ser necessária entre a hélice e o trem de pouso na posição de deflexão estática e no momento da decolagem, este parâmetro sendo atendido também pode ser observado na fig. 4.9.

Figura 4.9 – Projeto do trem de pouso principal

A posição do CG do avião deve estar entre uma área coberta por ângulos de 15° a 25° com a posição do contato do pneu do trem principal com o solo na posição horizontal (fig. 4.9) e deve estar a pelo menos a 25° com a linha vertical do avião na posição frontal. Tais parâmetros de projeto podem ser verificados nas fig. 4.9 e 4.10.

Figura 4.10 – Projeto do trem de pouso principal

4.3 Três Vistas

Finalmente podemos apresentar a seguir as três vistas da aeronave feitas em CAD, nas configurações convencional e triciclo. Apresentamos na fig. 4.11 as vista de frente e planta, na fig. 4.12 a vista lateral na configuração triciclo e finalmente na fig. 4.13 a vista lateral da configuração convencional.

Figura 4.11 – Vista de planta e vista frontal

Figura 4.12 – Vista lateral Triciclo

Figura 4.13 – Vista lateral Convencional

4.4 Desenho 3D

A seguir temos uma apresentação do modelamento matemático executado em software CAD 3D.

Figura 4.14 – Vistas Isométricas - Desenho Tridimensional

Figura 4.15 – Desenho Tridimensional.

5 REFINAMENTO DE PESO E PASSEIO DO C.G.

A seguir apresentamos o refinamento do peso do avião baseado na estimativa dos diversos componentes, partes e acessórios contidos na aeronave. Alguns itens merecem destaque como a escolha do tanque de combustível na asa para melhorarmos a distribuição de massa e o passeio do centro de gravidade e a necessidade de já considerarmos a presença do pára-quedas balístico pois o mesmo iria afetar o CG se considerado apenas após o projeto concluído.

5.1 Refinamento do Peso da Aeronave

Para o refinamento do peso da aeronave, iremos dividir a estimativa em dois grandes grupos, um com os componentes comuns de varias aeronaves e retirados de dados estatísticos existentes em Pazmany [III]; e outro grupo constituídos de componentes estruturais e retirados de equações e ábacos contidos também em Pazmany [III], as

equações assim como algumas considerações serão demonstradas aqui, mas os ábacos devem ser lidos na literatura descrita.

O peso estrutural é igual ao peso da aeronave vazia menos o peso do motor. O peso do motor Textron Lycoming O-235 está descrito na tabela anexa.

As equações abaixo utilizadas para a estimativa dos componentes estruturais mais importantes são de autoria de K. L. Sanders

5.1.1 Asa

Primeiramente é calculado o fator B:

$$B = \frac{GW(lb) \cdot n_{ult} \cdot S_W(ft^2) \cdot \left[\left(1.9 \cdot AR \right) - 4 \right]}{1 + \left(0.11 \cdot \frac{t}{c_r(\%)} \right)},$$

sendo:

GW= Peso bruto do avião

 n_{ult} = Fator de carga limite, neste nosso caso utilizado **3,8g** do FAR Part23, multiplicado por um fator de segurança de **1,5**.

Sw = Área alar

AR = Razão de aspecto

 $\frac{t}{c_r(\%)}$ = Maior espessura do perfil na raiz da asa em porcentagem da corda

Com um valor de B=6.026.333 entramos na equação $W_{asa} = 0,004209168 \cdot B^{0,695358556}$ retirada do ábaco do Pazmany [III]e encontramos um peso para a asa igual a cerca de 218 libras, ou aprox. **98 kg**.

5.1.2 Fuselagem

Por termos duas opções de estimativa de peso para a fuselagem, foi escolhida e utilizada a configuração de projeto otimizado, pois a estrutura se trata de liga de alumínio conforme a curva de projeto otimizado

Com um valor de peso bruto do avião GW=1653 libras entramos na equação $W_f = 0,0000328598 \cdot GW^2 + 0,0374280303 \cdot GW + 33,6166$ retirada do ábaco do Pazmany [III] e encontramos um peso para a fuselagem igual a cerca de 185 libras, ou **84.1 kg**.

5.1.3 Empenagem Horizontal

Primeiramente é calculado o fator A:

$$A = \frac{GW(lb) \cdot n_{ult} \cdot \left(S_H(ft^2)\right)^2 \cdot AR_H^2}{SW + \left(\frac{t}{c_r(\%)}\right)}$$

sendo:

GW= Peso bruto do avião

 n_{ult} = Fator de carga limite, neste nosso caso utilizado **3,8g** do FAR Part23, multiplicado por um fator de segurança de **1,5**.

SW = Área alar

 $S_{\rm H} =$ Área empenagem horizontal

 $AR_{H} = Razão de aspecto da empenagem horizontal$

 $\frac{t}{c_r(\%)}$ = Maior espessura do perfil na raiz da empenagem horizontal em porcentagem da

corda

Com o valor de A entramos na equação $W_H = 6,0508622173 \cdot A^{0.5902248328}$ retirada do ábaco do Pazmany [III] e encontramos um peso para a empenagem horizontal igual a cerca de 16.3 libras, ou **7.4 kg**.

5.1.4 Empenagem Vertical

O peso da empenagem vertical é baseado no peso da empenagem horizontal previamente calculado, baseando-se um uma regra de três simples:

Peso da empenagem horizontal= 7,4 kg

Área da empenagem horizontal= $2,42 \text{ m}^2$

Peso unitário = $\frac{W_H}{A_H}$

Área da empenagem vertical $Av = 1,03 \text{ m}^2$

Peso da empenagem vertical = $\frac{W_H}{A_H} \cdot A_V = 3.8 \text{ kg}$

5.1.5 Trem De Pouso

O peso do trem de pouso foi estimado em 6% do peso bruto para tipo convencional e 7% para triciclo. Assumindo 70% deste peso para o trem de pouso principal e os outros 30% para a bequilha ou trequilha , dependendo da configuração.

 $W_{LG} = 0,06 \cdot GW \text{ para a configuração convencional e}$ $W_{LG} = 0,07 \cdot GW \text{ para a configuração triciclo, nos dando:}$ TRICICLO $W_{LG(p)} = 40 \text{ kg}$ $W_{LG(b)} = 12,4 \text{ kg}$ CONVENCIONAL $W_{LG(p)} = 40 \text{ kg}$ $W_{LG(t)} = 4,9 \text{ kg}$

5.1.6 Controles

O peso dos controles foi estimado em 2% do peso bruto do avião nos dando um peso:

 $W_{C} = 1,5 \text{ kg}$

Os demais pesos, como *spiner*, berço do motor, luzes, hélice, partes elétricas, bombas, canopy, linhas, etc, foram simplesmente retirados de Pazmany [III], pois os dados da

aeronave apresentada pelo autor se assemelham muito com a nossa configuração, estes pesos, assim como os pesos calculados previamente podem ser observados na tabela 5.1. A seguir temos uma descrição do passeio do CG nas duas configurações da aeronave e posteriormente uma explicação e uma tabela contendo os valores dos pesos refinados.

5.2 Passeio do Centro de Gravidade

O cálculo do passeio do centro de gravidade é baseado na somatória dos momentos estáticos dividido pelo peso total do avião, conforme a equação abaixo:

$$CG = \frac{\sum M_{H}}{\sum W_{C}}, \text{ sendo}$$

$$\sum M_{H} = \sum B \cdot W_{c}, \text{ onde}$$

$$M_{H} = \text{Momento estático horizontal}$$

$$W_{C} = \text{Peso de cada componente}$$

$$B = \text{braço de alavanca posicionado no centro de gravidade de cada componente.}$$

Para minimizar retrabalhos, é prudente fazer uma avaliação preliminar sobre a adequação do centro de gravidade estimado, com base em estudos estatísticos. Walter Stender (Stender, 1969) realizou uma pesquisa exaustiva sobre a distribuição de pesos em aviões, chegando às seguintes conclusões utilizadas como parâmetros de nosso projeto:

- para todas as aeronaves examinadas, o menor limite dianteiro do CG foi de 15% da cma e o maior limite traseiro foi de 49% da cma.
- O limite dianteiro do CG variou de 15% a 38% da cma e o traseiro de 25% a 49%
- Na maioria dos casos o limite dianteiro ficou entre 25% e 30% da cma enquanto o limite traseiro ficou entre 36% e 40%.
- 4) O menor passeio do CG foi de 5% da CMA e o maior foi de 25% (20% na maioria dos casos).

Para o passeio do centro de gravidade foi considerado o seguinte algoritmo:

- Aeronave sendo completada com peso da parte frontal para a parte traseira do avião na configuração triciclo e convencional.
- Aeronave sendo completada com peso da parte traseira para a parte frontal do avião na configuração triciclo e convencional.

Podemos concluir que o passeio do centro de gravidade é satisfatório para ambas as configurações pois se enquadra em valores aceitáveis descritos em literaturas como Barros [I] e Pazmany [III]. Para a configuração triciclo temos um passeio entre 19.5% e 26% (fig. 5.1), o que é satisfatório visto que o trem de pouso para esta configuração deve se situar além destes limites como pode ser visto na fig. 5.4 e portanto termos uma estabilidade em vôo e em pouso. Para a configuração convencional o passeio do CG se situa entre 22% e 28% (fig. 5.2) o que também é satisfatório visto as explicações precedentes. Esta situação do trem de pouso pode também ser verificada na fig. 5.4.

Figura 5.1– Passeio do CG Triciclo

Figura 5.2- Passeio do CG Convencional

Com o intuito de demonstrarmos a evolução do projeto iremos ilustrar ainda a evolução do passeio do centro de gravidade onde é considerado nos desenhos somente a aeronave com peso operacional e peso máximo de decolagem, que são situações reais e limitadoras do projeto. Aqui também podemos verificar como foi feita a escolha da disposição dos vários componentes e estruturas com seus pesos refinados ao longo da geometria do avião, que basicamente são os momentos estáticos e que são parte integrante do calculo do passeio do CG.

5.2.1 Primeira tentativa de Passeio do CG

Inicialmente uma primeira proposta de passeio do centro de gravidade da aeronave foi levada e discutida, porém notou-se uma posição demasiadamente traseira nas posições do C.G. nas devidas configurações, o que foi atribuído à posição muito dianteira da asa e a uma cauda muito grande. A posição inicial do centro de gravidade era 36% a 40% da CMA para a condição triciclo e 39% a 42% da CMA para a condição convencional. A

figura 5.3 mostra o posicionamento dos principais componentes e sua influência no passeio do C.G.

Figura 5.3 – 1º Desenho Esquemático do Passeio do CG

5.2.2 Segunda tentativa de Passeio do CG

A seguir a asa foi reposicionada a 200 mm mais para trás do avião o que juntamente com a diminuição do tamanho da cauda culminou em um passeio do C.G. satisfatório que varia entre 24% e 29% para triciclo e 27% a 30% para convencional (FIG. 5.4).

Figura 5.4 – Desenho Esquemático Definitivo do Passeio do CG

5.2.3 Terceira e ultima tentativa de Passeio do CG

Após a mudança da forma em planta da asa o passeio do C.G. teve de ser recalculado, pois a asa diminui, afetando os cálculos já executados. Após o recálculo obtivemos um passeio ainda satisfatório o que varia entre 23% e 28% para triciclo e 26% a 30% para convencional (fig. 5.5). Os cálculos para esta última configuração podem ser analisados na tabela 5.1.

Figura 5.5 – Desenho Esquemático Definitivo do Passeio do CG

5.3 Tabela de Pesos e Momentos Estáticos

A seguir mostramos a tabela utilizada para o refinamento do peso do avião e calculo do passeio do CG:

	Estimativa de Peso Ref	inada								
		Triciclo	Braço	Mom. estatico	_			Conv.	Braço	Mom. estatico
1	Spiner	0,9	-106,6	-95,9		1	Spiner	0,9	-106,6	-95,9
2	Hélice	7,0	-49,4	-345,8		2	Hélice	7,0	-49,4	-345,8
3	Luz de pouso	0,2	102,3	20,5		3	Luz de pouso	0,2	102,3	20,5
4	Motor	104,5	368,0	38456,0		4	Motor	104,5	368,0	38456,0
5	Escapamento	4,0	381,7	1526,8	_	5	Escapamento	4,0	381,7	1526,8
6	Carenagem	5,5	799,8	4358,9		6	Carenagem	5,5	799,8	4358,9
7	Triquilha/Bequilha	12,4	728,0	9005,4		7	Triquilha/Bequilha	4,9	6734,8	32865,8
8	Berço do motor	1,0	775,2	775,2		8	Berço do motor	1,0	775,2	775,2
9	Bateria e caixa	12,0	821,2	9854,4		9	Bateria e caixa	12,0	821,2	9854,4
10	Bomba	0,5	862,3	431,2		10	Bomba	0,5	862,3	431,2
11	Cilindro de freio	0,5	1015,8	507,9	_	11	Cilindro de freio	0,5	1015,8	507,9
12	Controles	1,5	1095,5	1643,3		12	Controles	1,5	1095,5	1643,3
13	Radio	2,7	1454,4	3956,0	1	13	Radio	2,7	1454,4	3956,0
14	Equipamentos	33,0	1497,7	49424,1	1	14	Equipamentos	33,0	1497,7	49424,1
15	Pára-brisa	2,5	1908,8	4772,0		15	Pára-brisa	2,5	1908,8	4772,0
17	Linhas	2,0	1566,0	3132,0	1	17	Linhas	2,0	1566,0	3132,0
18	Tanque	12,9	1710,0	22127,4	_	18	Tanque	12,9	1710,0	22127,4
19	Trem principal	40,0	2019,3	80772,0		19	Trem principal	40,0	1629,3	65172,0
20	Asa	90,0	1710,0	153900,0		20	Asa	90,0	1710,0	153900,0
21	Canopy	6,0	2423,8	14542,8	_	21	Canopy	6,0	2423,8	14542,8
22	Cinto	1,0	2141,3	2141,3		22	Cinto	1,0	2141,3	2141,3
23	Controles	18,8	2227,6	41767,5		23	Controles	18,8	2227,6	41767,5
25	Fuselagem	84,1	2826,8	237620,8	_	25	Fuselagem	84,1	2826,8	237620,8
27	Emp. vertical	3,8	6504,8	24718,2		27	Emp. vertical	3,8	6504,8	24718,2
28	Emp. horizontal	7,4	6183,5	45757,9		28	Emp. horizontal	7,4	6183,5	45757,9
29	Assentos	5,0	2196,8	10984,0		29	Assentos	5,0	2196,8	10984,0
30	Parede de fogo	2,3	941,3	2202,6		30	Parede de fogo	2,3	941,3	2202,6
31	Pára-quedas	17,5	2338,0	40915,0		31	Pára-quedas	17,5	2338,0	40915,0
	Total	478,9		804871,3			Total	471,4		813131,8
	CG			1680,6			CG	CG		1724,8
					1	L				
	Avião básico	478,9					Avião básico	471,4		
18a	Combustível	26,0	1632,6	42447,6	1	18a	Combustível	26,0	1632,6	42447,6
29a	Piloto	55,0	1830,0	100650,0		29a	Piloto	55,0	1830,0	100650,0
32	Óleo	3,4	607,2	2064,5		32	Óleo	3,4	607,2	2064,5
	Peso Total	563,3		950033,4			Peso Total	555,8		958293,9
	CG frente			1686,5	23		CG frente			1724,0
	Posição inicio CMA			-	1400					
	Avião básico	478,9					Avião básico	471,4		
18a	Combustível	104,0	1632,6	169790,4		18a	Combustível	104,0	1632,6	169790,4
29a	Piloto	85,0	2030,1	172558,5	1	29a	Piloto	85,0	2030,1	172558,5
29b	Aluno	85,0	2030,1	172558,5		29b	Aluno	85,0	2030,1	172558,5
32	Óleo	3,4	607,2	2064,5	1	32	Oleo	3,4	607,2	2064,5
	Peso Total	756,3		1321843,2	1		Peso Total	748,8		1330103,7
		ł	1		-	I	1		-	

Tabela 5.1 – Refinamento de Peso

6 CARGAS

A presente aeronave está sendo desenvolvida para a categoria normal. O FAR Part 23 em seu artigo 337 especifica que o fator de carga de manobra positivo limite não pode ser menor que 3,8 e o negativo não pode ser menor que 1,5. A velocidade de estol V_{s1} será de 45 knots em atendimento às especificações de projeto. A velocidade de estol V_{s2} será determinada a partir do C_L mín do perfil que de acordo com a Fig.3.3, sendo assim tem-se:

$$V_{s2} = \sqrt{\frac{2 \cdot W}{S \cdot \rho \cdot C_{Lmin}}} = 53,6 \text{ knots}$$

A velocidade de mergulho, Vd, deve ser determinada com base na velocidade de cruzeiro (Vc = 240 km/h), e está detalhado a seguir:

$$V_d = 1,25 \cdot V_c = 162 \ knots$$

A velocidade de manobra para fator de carga positivo, V_A, será determinada em função da velocidade de estol e do fator de carga de manobra positivo limite:

$$V_A = V_{S1} \cdot \sqrt{n} = 87,7 \ knots$$

A velocidade de manobra para fator de carga negativo, V_b , será determinada em função da velocidade de estol e do fator de carga de manobra negativo limite:

$$V_b = V_{S2} \cdot \sqrt{n} = 80,1 \ knots$$

Compilando as informações acima apresentadas tem-se o diagrama V-n apresentado na Figura 6.1:

Figura 6.2 – Diagrama V-n (velocidade [kph])

7 EVOLUÇÃO DOS DESENHOS

Antes de termos a configuração definitiva o projeto passou por diversas fases, redimensionamentos, formas que iam sendo suavizadas, novos conceitos e técnicas introduzidas, sistemas que iam sendo modificados e introduzidos, enfim, mostraremos a seguir como foi o passo a passo para chegarmos a uma configuração final. Estas configurações também foram amplamente modificadas devido a questões como o passeio do CG, volume de cauda, escolha dos perfis, etc, ou seja, à medida que o projeto evoluía os desenhos iam ganhando mais detalhes e isto pode ser comprovado nas figuras e breves explicações a seguir.

É extremamente satisfatório comprovar a evolução do avião desde os primeiros esboços até a configuração final.

No croqui inicial (Fig.7.1) são assumidas as primeiras definições da aeronave, desde o início respeitando as prioridades do projeto. Este é um esboço feito à mão onde podemos notar uma primeira idéia do trabalho que viria adiante.

Figura 7.1 – Esboço Inicial

No desenho a seguir (Fig.7.2), que foi um primeiro esboço feito em CAD 2D, podemos notar diversos problemas como uma empenagem ainda bem pré-matura, um canopy com formas inadequadas, uma frente ainda bem rudimentar e principalmente uma asa com excesso de envergadura (aprox. 13m) e razão de aspecto muito grande e fora da tabela comparativa (aprox. 10) o que dificultaria muito a manutenção do avião em hangares normais e não nos daria um bom desempenho para nossa aplicação. Porém já desde esta proposta já notamos o manequim devidamente posicionado e a cabine já próxima da solução final. A fuselagem ainda está reta e sem formas suaves.

Figura 7.2 – 1° Desenho CAD – Bi-Dimensional

No desenho a seguir (fig.7.3), o problema do canopy começa a ser sanado, tomando uma forma mais arredondada; também a envergadura da asa é corrigida e passa a ser de 11,25m e a razão de aspecto próximo de 8. Uma primeira tentativa de *spiner* é proposta porém podemos observar a discordância do mesmo com a fuselagem. Também aqui e inserida a hélice com 1,9m de diâmetro e feita uma aproximação da altura do avião. A cauda ainda é um problema a ser resolvido, assim como o posicionamento do motor e da parede de fogo. O comprimento do avião e os primeiros cálculos de volume de cauda são efetuados aqui.

Figura 7.3 – 2° Desenho CAD 2D

Devido à dificuldade em se fechar a estética do avião e também os volumes de cauda fazendo desenhos em CAD, optou-se por voltar aos desenhos manuais, aproveitando aquilo que já estava considerado como fechado. Aqui podemos ver o spinner definitivo e com uma forma hiperbólica conforme sugerido por Galvão. Também podemos ver o esboço do que virá a ser a solução para o trem de pouso principal híbrido, que será espelhado em torno do eixo da longarina da asa. Outro problema que já começa a ser discutido aqui é a questão do "*deep stall*" da empenagem. Aqui já podemos notar o adelgaçamento da fuselagem logo após a cabine e a harmonia entre as curvas do canopy. Uma primeira proposta para o trem convencional é discutida neste ponto.

Figura 7.4 – Retorno do Desenho à Mão

A seguir a principal questão é a volta ao CAD e com a inserção de um motor para referencia do posicionamento do mesmo, já podemos notar a empenagem horizontal devidamente posicionada, como os ângulos de molhamento considerados. Também a posição da asa em relação a fuselagem já é discutida e a perfilagem começa a ser inserida também. Aqui começamos todo o estudo do passeio do centro de gravidade, onde a asa é reposicionada, a cauda redimensionada e os trens de pouso considerados. Podemos notar que a fuselagem na vista de planta ainda se encontra "gorda" e posteriormente é reformulada para diminuirmos o arrasto parasita, como solução seguimos as propostas de Galvão.

Figura 7.5 – 3° Desenho CAD 2D

A seguir já temos o primeiro modelo matemático em 3D, ainda com a solução da asa com área alar e envergadura maiores e forma reto-trapezoidal. Os perfis da asa e empenagens já estão definidos, a asa já está reposicionda seguindo o passeio do C.G. O motor já está posicionado e todo o estudo ergonômico concluído. O adelgaçamento da fuselagem é proposto tanto na parte lateral como na plana do avião. O avião já está definido, porém por questões estéticas, aerodinâmicas e estruturais a asa é completamente redimensionda, os cálculos refeitos, o passeio do C.G. recalculado para obtermos a solução definitiva.

Figura 7.6 - Primeiro avião em CAD 3D - Asa reto-trapezoidal

Finalmente após todos os cálculos redefinidos segue a proposta final do avião com a asa em forma trapezoidal. As poucas modificações são o inserimento das polainas para

diminuirmos o arrasto parasita, eliminação dos raios de concordância da empenagem vertical, uma pequena alteração no leme e um pequeno espessamento da fuselagem em vista de planta para evitarmos o descolamento brusco do fluido e termos uma reação adversa à proposta de diminuição do arrasto. Também aqui pudemos fechar a configuração dos ailerons e dos flapes, assim como o profundor. Também a empenagem horizontal é reduzida para respeitarmos o volume de cauda horizontal e questões estéticas.

Figura 7.7 – Desenho definitivo CAD 3D

8 RELATÓRIO DESCRITIVO

8.1 Tipo:

Treinador básico, certificado conforme RBHA 23/103 e JAR-VLA, dois lugares lado a lado.

8.2 Versões:

Quatro versões que saem de fábrica com a combinação das opções: trem de pouso tipo convencional ou triciclo; vôo controlado visualmente (VFR) ou por equipamentos (IFR).

8.3 Asas:

Asa baixa, forma em planta trapezoidal, estrutura *cantilever*, aerofólio NACA 64₂215 em toda a asa, com torção geométrica de 2°. Diedro de 3°30', incidência de 3° na raiz e 1° na ponta. Longarina única, confeccionada em liga de alumínio 2024 e rebitada, nervuras em liga de alumínio 2024 e rebitadas na longarina. Revestimento em painéis de liga de alumínio 2024 colados nas nervuras e na longarina. Flape metálico tipo *plain*. Ailerons metálicos e balanceados dinamicamente.

8.4 Fuselagem:

Semi-monocoque com estrutura confeccionas em tubos de aço liga 4130 soldados e revestimento em painéis de liga de alumínio 2024 rebitados.

8.5 Cauda:

Empenagem horizontal tipo baixa, estrutura *cantilever*, forma em planta trapezoidal.
8.6 Trens de pouso:

Principal fixo na longarina da asa, com amortecedores hidráulicos e freio a disco, pode ser utilizado o mesmo trem de pouso principal nas duas versões, bastando na montagem optar por um giro de 180° em torno do eixo de fixação na longarina da asa. Opções de bequilha ou trequilha conforme a versão escolhida.

8.7 Grupo Moto-propulsor:

Um motor Textron Lycoming O-235-L quatro cilindros planos (118 HP a 2800 rpm) acoplado a uma hélice bi-pá, de madeira, com passo fixo, com 1,8m de diâmetro. Tanque de combustível integral na asa com capacidade de 138 litros.

8.8 Acomodações:

Dois bancos dispostos lado a lado, em uma cabine completamente fechada e ventilada com *canopy* deslizante e transparente. Compartimento de bagagem para até 10 kg localizado atrás dos bancos; pára-quedas balístico localizado atrás dos bancos.

8.9 Equipamentos:

Instrumentação completa VFR com opção de instrumentação completa IFR.

8.10 Características Técnicas:

Dimensões externas	Simbologia	Valor	Unidade
Envergadura da asa	В	10,5	m
Corda da asa na raiz		1,527	m
Corda da asa na ponta		0,944	m
Corda média Aerodinâmica	С	1,257	m
Razão de aspecto	A	8,507	-
Afilamento asa		0,62	-
Enflechamento asa		0,7°	
Comprimento total	Lf	7,36	m

UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

Altura total	Н	1,8	m
Envergadura emp. Horiz.	Bh	4,22	m
Distância rodas trem principal		3,2	m
Distância trem principal			
bequilha		1,3	m
Distância trem principal			
trequilha		5,5	m
Diametro hélice		1,8	m
Folga hélice / chão		0,25	m
Altura emp. Vertical	Bv	1,53	m
Razão de aspecto emp. Hor.	Ah	7,359	-
Dimensões internas	Simbologia	Valor	Unidade
Altura cabine	Нс	1,07	m
Largura cabine	Wc	1,05	m
Comprimento cabine	Lc	1,6	m
Áreas	Simbologia	Valor	Unidade
Área alar	S	12,96	m^2
Área estab. Horiz.	Sh	2,42	m^2
Área estab. Vertical	Sv	1,03	m^2
Área Profundor	Sp	0,79	m^2
Área leme	SI	0,344	m^2
Área flapes (total)		1,4	m^2
Área ailerons (total)		1,14	m^2
Volume de cauda	Simbologia	Valor	Unidade
Braço est. Horiz.	Lh	4,286	m
Braço est. Vertical	Lv	4,697	m
Volume de cauda Horiz.	Vh	0,637	-
Volume de cauda Vertical	Vv	0,036	-

Relações geométricas	Simbologia	Valor	Unidade
Comp/Envergadura	Lf/B	0,701	-
Braço est. horiz./Corda m	Lh/C	3,41	-
Área Profundor/ Área est. hor.	Sp/Sh	0,326	-
Área leme / Área est. vert.	SI/Sv	0,334	-
Área estab vertical / área alar	Sv/S	0,079	-
Área estab horiz. / área alar	Sh/S	0,187	-
Pesos e cargas	Simbologia	Valor	Unidade

UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

Peso vazio	We	563	kg
Peso máximo de decolagem	Wto	756	kg
Performance	Simbologia	Valor	Unidad
Velocidade máxima cruzeiro	W/P	240	km/h
Velocidade estol	Ve	83	Km/h
Razão de subida (min)	RC	300	ft/min
Teto de serviço		3,7	Km
Distância de decolagem		500	m
Distância de pouso		500	m

9 AERODINÂMICA

Para o desenvolvimento dos cálculos aerodinâmicos, será adotado o procedimento de cálculo aerodinâmico para aeronaves leves subsônicas proposto por Pinto (1999). Esse procedimento elimina as simplificações adotadas no método proposto por Pullin (1976) considerando as variações do comportamento aerodinâmico de cada componente com a velocidade do vôo e as deflexões do profundor para se manter o equilíbrio longitudinal em cada velocidade.

9.1 Dados Iniciais

9.1.1 Determinação da Faixa de Velocidades para Cálculo

Os cálculos aerodinâmicos devem ser realizados para uma determinada faixa de velocidades que deve abranger toda a faixa de velocidades de operação da aeronave.

A faixa de velocidades em que o BRATI opera vai de 20 a 80 m/s ou 72 a 288 km/h.

9.1.2 Número de Reynolds ao Longo da Envergadura

Nesse procedimento a variação do número de Reynolds é considerada. Para cada seção da asa é calculado o número de Reynolds, segundo a equação apresentada a seguir, para as velocidades da faixa de operação da aeronave.

$$\operatorname{Re} = \frac{\rho \cdot V \cdot \overline{\overline{c}}}{\mu}$$

Sendo:

- Re o número de Reynolds
- ρ a densidade do ar cujo valor é igual a 1,225kg/m³;
- V a velocidade da aeronave
- $\overline{\overline{c}}$ a corda média aerodinâmica da seção da asa
- μ a viscosidade cinemática cujo valor é igual a 17,894 x 10⁻⁶kg/m.s;

A Tabela 9.1 apresenta os números de Reynolds encontrados em cada seção da asa para a faixa de velocidades avaliada.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Re1 x 10^6	2,067	2,377	3,100	3,617	4,134	4,650	5,167	5,684	6,200	6,820	7,234	7,750	8,267
Re2 x 10^6	1,860	2,139	2,791	3,256	3,721	4,186	4,651	5,116	5,581	6,139	6,512	6,977	7,442
Re3 x 10^6	1,654	1,902	2,481	2,895	3,308	3,722	4,136	4,549	4,963	5,459	5,790	6,203	6,617
Re4 x 10^6	1,448	1,665	2,172	2,534	2,896	3,258	3,620	3,982	4,344	4,778	5,068	5,430	5,792

Tabela 9.1 – Números de Reynolds da asa

9.2 Coeficientes de Sustentação

9.2.1 C_L da Aeronave em Vôo Equilibrado

Em vôo equilibrado o módulo da sustentação da aeronave, projetada na direção do peso, deve ser igual ao peso da mesma.

Como os valores de ângulo de ataque, principalmente em regime de cruzeiro, são bastante pequenos ($\alpha < 15^{\circ}$), pode-se considerar a sustentação sempre alinhada com o peso. Desta forma o coeficiente de sustentação da aeronave será calculado segundo a equação apresentada a seguir.

$$C_{\rm L} = \frac{2 \cdot W}{\rho \cdot V^2 \cdot S}$$

Sendo:

- C_L o coeficiente de sustentação da aeronave
- W o peso da aeronave
- ρ a densidade do ar cujo valor é igual a 1,225kg/m³;
- V a velocidade da aeronave
- S a área em planta da asa

A Tabela 9.2 apresenta os coeficientes de sustentação da aeronave para a faixa de velocidades avaliada.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
CL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145

Tabela 9.2 – Coeficientes de sustentação da aeronave

9.2.2 Coeficiente de Momento Aerodinâmico da Aeronave

O coeficiente de momento da aeronave é dado pelo somatório das contribuições da asa e da fuselagem, conforme apresentado na equação a seguir.

$$\mathbf{C}_{\mathrm{Mo}} = \left(\mathbf{C}_{\mathrm{Mo}}\right)_{\mathrm{W}} + \left(\mathbf{C}_{\mathrm{Mo}}\right)_{\mathrm{B}}$$

9.2.2.1 Contribuição da Asa para o C_{M0}

A contribuição da asa ao coeficiente de momento da aeronave pode ser divida ainda em duas outras parcelas; a parcela devida à distribuição básica de sustentação da asa e a devida a perfilagem da asa.

A parcela devida à distribuição de sustentação básica é obtida por:

$$\left(\mathbf{C}_{_{\mathbf{M}o}}\right)_{\!_{\mathbf{W}}}^{\!_{\mathbf{L}\mathbf{B}}} = -\mathbf{G}\cdot\boldsymbol{\epsilon}\cdot\mathbf{A}\cdot\mathbf{a}_{_{0}}\cdot\mathbf{tg}(\boldsymbol{\Lambda}_{_{\mathbf{c}/4}})$$

Sendo:

- G um fator obtido do gráfico 4.5a (Pullin)
- ε a torção aerodinâmica da asa
- A o alongamento da asa
- a_o o valor de $dC_L/d\alpha$ para o perfil bidimensional sem flape
- $\Lambda_{c/4}$ o enflexamento na linha de ¹/₄ de corda

$$(C_{Mo})_{W}^{LB} = 0,0427$$

A parcela devida a perfilagem da asa é obtida por:

$$(C_{Mo})_{W}^{\text{perfil}} = E \cdot C_{Mac} + E' \cdot \Delta C_{Mac}$$

Sendo:

- E e E' fatores obtidos dos gráficos (Pullin)
- ΔC_{Mac} e C_{Mac} incremento devido a flape e coeficiente médio de momento

$$(C_{Mo})_{W}^{perfil} = -0,0281$$

9.2.2.2 Contribuição da Fuselagem para o C_{MO}

A contribuição da fuselagem para o coeficiente de momento da aeronave é obtida através do gráfico 4.9 (Pullin), sendo função de:

$$\frac{w^2}{S_B^2} \qquad \qquad e \qquad \qquad \frac{S_{Bf}\cdot l_{Bf}}{S_B\cdot l_B}$$

Sendo:

- w a largura da máxima da fuselagem
- S_B a área em planta da fuselagem
- l_B o comprimento da fuselagem
- S_{Bf} a área em planta da fuselagem até $\frac{1}{4}$ da c.m.a. da asa
- l_{Bf} o comprimento da fuselagem até $\frac{1}{4}$ da c.m.a. da asa

Conhecendo:

$$\frac{S_{bf} \cdot l_{bf}}{S_b \cdot l_b} = 0,0956 \qquad \qquad i_w = 5,00^\circ \qquad \qquad \frac{w^2}{S_B^2} = 0,2566$$

Temos:

 $(C_{Mo})_{B} = -0,0230$

9.2.3 Determinação do Centro Aerodinâmico da Aeronave

O centro aerodinâmico de uma aeronave é determinado por:

$$\mathbf{h}_0 = \mathbf{h}_{0W} + \left(\Delta \mathbf{h}_0\right)_{\mathrm{B}}$$

9.2.3.1 Determinação do Centro Aerodinâmico da Asa

O centro aerodinâmico de uma asa pode ser obtido através dos gráficos 4.4a e 4.4b (Pullin et al., 1976), tendo como parâmetros λ , $\Lambda c/4$ e A.

O valor do centro aerodinâmico será obtido por interpolação. Essa interpolação deverá ser feita com o parâmetro 1/A substituindo o parâmetro A.

Dessa forma:

 $h_{ow} = 0,26c$

9.2.3.2 Influência da Fuselagem no Centro Aerodinâmico da Aeronave

A influência da fuselagem no centro aerodinâmico da aeronave é obtida através do gráfico 4.10 (Pullin), sendo função da relação entre a corda na raiz da asa e o comprimento da fuselagem (c_r/l_B) e da relação entre a posição longitudinal do ponto de ¹/₄ da corda da raiz da asa e o comprimento da fuselagem (l_n/l_B) .

Do gráfico 4.10 (Pullin), retira-se o valor de $-(\Delta h_0)_B \cdot \left(\frac{S \cdot \overline{c}}{w \cdot c_r^2}\right)$ e dessa forma encontra-se a influência da fuselagem no centro aerodinâmico da aeronave.

$$(\Delta h_0)_B = -(valor \ obtido \ do \ gráfico) \cdot \left(\frac{w \cdot c_r^2}{S \cdot \overline{\overline{c}}}\right)$$

 $(\Delta h_0)_B = -0.0389$

Assim o centro aerodinâmico da aeronave é $h_0 = 0,2211c$

9.2.4 Coeficiente de Sustentação da Empenagem Horizontal em Vôo Equilibrado

Em vôo equilibrado o momento de arfagem da aeronave é nulo. Desta forma, conhecendo a equação de equilíbrio da aeronave e os valores de C_L , h, h_o, $\overline{\overline{c}}$ e l_t, é possível calcular, para cada velocidade, o coeficiente de sustentação da empenagem horizontal para a manutenção da condição de vôo equilibrado; conforme apresentado na equação abaixo.

$$C_{\text{LEH}} = \left[C_{\text{M}} - C_{\text{Mo}} + C_{\text{L}} \cdot (\mathbf{h} - \mathbf{h}_{0})\right] \cdot \frac{\overline{\overline{c}}}{l_{\text{t}}}$$

A Tabela 9.3 apresenta os coeficientes de sustentação da aeronave para a faixa de velocidades avaliada.

Tabela 9.3 – Coeficientes de sustentação da empenagem horizontal

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
CL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145
Cleh	0,044	0,034	0,021	0,016	0,013	0,011	0,009	0,008	0,007	0,006	0,006	0,005	0,005

9.2.5 Coeficiente de Sustentação do Conjunto Asa-Fuselagem

O coeficiente de sustentação da aeronave é dado pela soma das parcelas de coeficiente de sustentação do conjunto asa-fuselagem e da empenagem horizontal.

$$\boldsymbol{C}_{\mathrm{L}} = \boldsymbol{C}_{\mathrm{LWB}} + \boldsymbol{C}_{\mathrm{LEH}}$$

Dessa forma, os coeficientes de sustentação do conjunto asa-fuselagem para a faixa de velocidades estudada pode ser obtido, uma vez que os valores de C_L e C_{LEH} já foram calculados.

A Tabela 9.4 apresenta os coeficientes de sustentação do conjunto asa-fuselagem para a faixa de velocidades avaliada.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
CL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145
Cleh	0,044	0,034	0,021	0,016	0,013	0,011	0,009	0,008	0,007	0,006	0,006	0,005	0,005
Clwb	2,274	1,719	1,009	0,741	0,566	0,447	0,362	0,298	0,250	0,206	0,183	0,159	0,140

Tabela 9.4 – Coeficientes de sustentação do conjunto asa-fuselagem

9.2.6 Variação do Coeficiente de Sustentação da Asa em Relação ao Ângulo de Ataque

O valor de a_o, que é obtido dos gráficos ou características dos perfis escolhidos, mostra a variação do coeficiente de sustentação da asa em relação ao ângulo de ataque para o perfil bidimensional.

Porém, quando se passa de um perfil bidimensional para uma asa finita, o aparecimento dos vórtices laterais e induzidos cria regiões de "upwash" e "downwash". Dessa forma, torna-se necessário fazer uma correção de a_o, fornecendo uma variação do coeficiente de sustentação "a", que é o valor corrigido para a asa tridimensional.

Assim, para asas com alongamento finito, Pullin (1976) propõe que:

$$a = \frac{2 \cdot \pi \cdot A}{2 + \sqrt{\frac{A^2}{k^2} \cdot \left(\beta^2 + tg^2 \Lambda_{c/2}\right) + 4}}$$

Sendo os valores dos parâmetros k e ß dados pelas equações abaixo:

$$k = \frac{\overline{a}_0}{2 \cdot \pi}$$
$$k = 0,9939$$
$$\beta^2 = \sqrt{1 - M^2}$$

O valor de a ainda pode ser corrigido devido aos efeitos do gap do aileron. Isso é feito multiplicando-se o valor da variação do coeficiente de sustentação com o ângulo de ataque da asa por um fator de correção obtido do gráfico 4.11 (Pullin et al., 1976).

A Tabela 9.5 apresenta os valores de β e a_o .

Tabela 9.5 – Valores de β e a_o

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
β	0,998	0,998	0,996	0,995	0,993	0,991	0,989	0,987	0,984	0,981	0,979	0,975	0,972
ao	5,026	5,027	5,030	5,033	5,036	5,040	5,044	5,049	5,054	5,061	5,066	5,072	5,079

9.2.7 Ângulo de Ataque da Aeronave

9.2.7.1 Determinação do Ângulo de Sustentação Nula da Asa em Relação à Linha de Referência da Fuselagem

Segundo Pullin (1976), o ângulo de sustentação nula da asa em relação à linha de referência da fuselagem é dado por:

$$\alpha_{0w} = (\alpha_{0w})_0^R - i_R' + J \cdot \varepsilon$$

Sendo J é um fator de ajuste, dependente do alongamento e do afilamento, obtido do gráfico 6.2.2 (Pullin et al., 1976).

9.2.7.2 Determinação do Ângulo de Sustentação Nula da Fuselagem em Relação à Linha de Referência da Fuselagem

Admite-se a linha de sustentação nula da fuselagem como a linha que liga o bordo de ataque da fuselagem ao bordo de fuga da mesma.

 $\alpha_{\rm of} = 0^{\circ}$

9.2.7.3 Determinação da Área Efetiva da Asa

A área efetiva da asa, S_e , é definida como a diferença entre a área total da asa e as áreas sombreadas pela fuselagem e ou naceles. Ou seja, a área efetiva da asa é aquela que está livre para o escoamento.

$$S_e = 11,35 \text{ m}^2$$

9.2.7.4 Determinação de Fatores Obtidos de Gráficos

Interferência entre a Distribuição de Sustentação da Asa e da Fuselagem

Os fatores de interferência entre a distribuição de sustentação da asa e da fuselagem são determinados pelo gráfico 6.5.1 (Pullin et al., 1976) através da relação entre o diâmetro máximo do corpo equivalente de revolução e a envergadura da asa.

Massa Aparente

O fator de massa aparente é obtido pelo gráfico 6.4.1 (Pullin et al., 1976), sendo o parâmetro de determinação a razão entre o comprimento da fuselagem e o diâmetro máximo do corpo equivalente de revolução.

Relação entre o Coeficiente de Arrasto de um Cilindro Infinito e um Cilindro Finito

A relação entre o coeficiente de arrasto de um cilindro infinito e um cilindro finito é determinada pelo gráfico 6.4.2 (Pullin et al., 1976), sendo o parâmetro de determinação

a razão entre o comprimento da fuselagem e o diâmetro máximo do corpo equivalente de revolução.

Coeficiente de Arrasto de um Cilindro sobre Escoamento Inclinado

O coeficiente de arrasto de um cilindro sobre escoamento inclinado é determinado pelo gráfico 6.4.3 (Pullin et al., 1976), sendo o parâmetro de determinação a relação $M \cdot sen(\alpha - \alpha_{0f})$

9.2.7.5 Ângulo de Ataque da Aeronave

Substituindo os valores encontrados ao longo deste item, obtêm-se os valores de ângulo de ataque da aeronave em função de C_{LWB} e a ao longo da faixa de velocidades analisada.

A Tabela 9.6 apresenta os ângulos de ataque da aeronave em função de C_{LWB} e a ao longo da faixa de velocidades analisada.

Tabela 9.6 – Ângulos de ataque da aeronave ao longo da faixa de velocidades analisada

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Clwb	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145
а	4,924	4,925	4,928	4,931	4,934	4,937	4,941	4,946	4,951	4,957	4,962	4,968	4,974
α [°]	28,182	20,962	11,607	8,029	5,695	4,089	2,938	2,085	1,435	0,841	0,527	0,202	-0,063

9.2.7.6 Sustentação da Asa Montada com a Fuselagem

Pullin (1976) propõe que a sustentação da asa, montada juntamente com a fuselagem, é dada de acordo com a seguinte equação:

$$C_{L:W} = \left(K_{w(f)} - K_{f(w)}\right) \cdot a \cdot \frac{(\alpha - \alpha_{0w})}{57.3} \cdot \frac{S_e}{S}$$

Sendo $K_{w(f)}$ e $K_{f(w)}$ os fatores de interferência entre a distribuição de sustentação da asa e da fuselagem.

UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

A Tabela 9.7 apresenta os coeficientes de sustentação da asa montada juntamente com a fuselagem.

Tabela 9.7 - Coeficientes de sustentação da asa montada juntamente com a fuselagem

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
α [°]	28,182	20,962	11,607	8,029	5,695	4,089	2,938	2,085	1,435	0,841	0,527	0,202	-0,063
Clw	2,433	1,917	1,249	0,994	0,827	0,713	0,631	0,570	0,524	0,482	0,459	0,437	0,418

9.2.7.7 Sustentação da Fuselagem

Corpo Equivalente de Revolução (CER)

O corpo equivalente de revolução é definido como um corpo de revolução com o mesmo comprimento da fuselagem em estudo e com seções circulares de mesmo perímetro das seções da fuselagem em estudo.

A figura 9.1 apresenta a vista lateral e vista em planta da fuselagem em estudo, que foi dividida em 43 estações. Nesse processo empregou-se uma ferramenta CAD.

Figura 9.1 _ Divisão da fuselagem em 43 estações

Sendo:

- D o diâmetro máximo do CER = 1,115 m
- l_f o comprimento da fuselagem = 7,36 m
- l_a a posição do diâmetro máximo do CER = 2,40 m

• l_c o comprimento da cauda = 4,96 m

Figura 9.2_ Área molhada

Sendo:

- S_{MA} a área molhada da região A = 6,03 m²
- S_{MC} a área molhada da região $C = 8,08 \text{ m}^2$

Coeficiente de Sustentação da Fuselagem

O coeficiente de sustentação da fuselagem é dado por:

$$C_{LB} = \frac{(\alpha - \alpha_{0f})}{57.3 \cdot S} \cdot \left[\frac{K \cdot \pi \cdot D^2}{2} + \eta \cdot C_{Dc} \cdot \frac{(\alpha - \alpha_{of})}{57.3} \cdot \int_{x_0}^{l_f} d \cdot dx \right]$$

Sendo:

- α o ângulo de ataque da fuselagem
- α_{OF} o ângulo de ataque de sustentação nula da fuselagem = 0°
- S a área de referencia da asa = $12,96m^2$
- K o fator de massa aparente = 0.88

• D o diâmetro máximo do CER = 1.12m

1

- η o arrasto cilindro infinito / arrasto cilindro finito = 0.64
- C_{Dc} o coeficiente de arrasto para escoamento inclinado em um cilindro infinito em função do n° de Mach = 1.2
- X_0 o ponto onde o escoamento passa de potencial a viscoso = 4,03 m

•
$$\int_{x0}^{l_f} d dx$$
 a área molhada da fuselagem atrás do ponto Xo = 3,41 m²

A Tabela 9.8 apresenta os coeficientes de sustentação da fuselagem.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
χ [°]	28,182	20,962	11,607	8,029	5,695	4,089	2,938	2,085	1,435	0,841	0,527	0,202	-0,063
Clb	0,1156	0,0764	0,0354	0,0227	0,0152	0,0105	0,0073	0,0051	0,0035	0,0020	0,0012	0,0005	-0,0001

Tabela 9.8 – Coeficientes de sustentação da fuselagem

9.2.8 Ângulo de Ataque da Asa

O ângulo de ataque da asa é dado pela adição do ângulo de ataque da aeronave com o ângulo de incidência da asa.

A Tabela 9.9 apresenta os ângulos de ataque da asa.

Tabela 9.9 –	Ângulos d	e ataque da asa
--------------	-----------	-----------------

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
αω [°]	31,182	23,962	14,607	11,029	8,695	7,089	5,938	5,085	4,435	3,841	3,527	3,202	2,937

9.3 Deflexões do Profundor

9.3.1 Efeito de Downwash da Asa sobre a Empenagem Horizontal

9.3.1.1 Downwash em Relação ao C.A.

Através do gráfico 6.2.6 (Pullin), obteve-se o downwash no centro aerodinâmico da empenagem horizontal em função do A, λ , m e r :

UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

Figura 9.3_ Definição de m e r

Figura 9.4_ Cotas do BRATI-01 para determinação do downwash

Da vista de elevação tem-se:

$$r.b/2 = 4,151 \text{ m}$$
 \therefore $r = 0,791 \text{ m}.b/2 = 1,083 \text{ m}$ \therefore $m = 0,206 \text{ m}$

$$\frac{d\varepsilon}{d\alpha}\Big|_{C.A.} = 0,55$$

9.3.1.2 Downwash Médio

A partir do gráfico 6.2.7 (Pullin), obteve-se a relação $d\epsilon/d\alpha$ (Med) / $d\epsilon/d\alpha$ (C.A.) e então o downwash médio que foi de 0,5259.

9.3.1.3 Downwash na Empenagem Horizontal

O ângulo de "downwash" na empenagem horizontal para cada velocidade de vôo será calculado de acordo com a equação a seguir e seus valores para a faixa de velocidades estudada estão apresentados na Tabela 9.10.

$$\varepsilon = \frac{d\varepsilon}{d\alpha}\Big|_{MED} \cdot (\alpha - \alpha_{0f})$$

Tabela 9.10 – Downwash na empenagem horizontal

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
З	14,821	11,025	6,104	4,222	2,995	2,151	1,545	1,096	0,755	0,442	0,277	0,106	-0,033

9.3.2 Variação do Coeficiente de Sustentação da Empenagem Horizontal com a Variação do Ângulo de Ataque

A variação do coeficiente de sustentação da empenagem horizontal com a variação do ângulo de ataque da mesma é afetada por duas características básicas: os efeitos tridimensionais da empenagem e o efeito da fresta entre o estabilizador e o profundor da empenagem.

Quanto aos efeitos tridimensionais da empenagem, trata-se a mesma como uma asa e procedem-se os cálculos da forma comum. A equação a seguir será utilizada para a determinação da variação do coeficiente de sustentação da empenagem horizontal.

$$a_{1}* = \frac{2 \cdot \pi \cdot A_{EH}}{2 + \sqrt{\frac{A_{EH}^{2}}{k^{2}} \cdot (\beta^{2} + tg^{2}\Lambda_{c/2}) + 4}}$$

Os parâmetros k e β são os mesmos já definido anteriormente. A correção devida a fresta existente entre o estabilizador e o profundor será obtida a partir dos gráficos 4.11a e 4.11b (Pullin).

Assim, temos:

k _{eh}	1,0265
x/c	0,4029
C _{gap} /C	0,0045
a ₁ /a ₁ * (graf. 4.11)	0,8016

Tabela 9.11 – Valores dos parâmetros e fatores de correção

Tabela 9.12 – Valores de β e a_1^* ao longo da faixa de velocidades estudada

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
β	0,998	0,998	0,996	0,995	0,993	0,991	0,989	0,987	0,984	0,981	0,979	0,975	0,972
a1*	4,215	4,216	4,218	4,220	4,222	4,224	4,227	4,229	4,233	4,237	4,240	4,244	4,248
(a1)m	3,379	3,380	3,381	3,383	3,384	3,386	3,388	3,390	3,393	3,396	3,399	3,402	3,406

9.3.3 Variação do Coeficiente de Sustentação da Empenagem Horizontal com a Variação da Deflexão do Profundor

Para o cálculo da variação do coeficiente de sustentação da empenagem horizontal com a variação da deflexão do profundor será utilizado o procedimento proposto por Pullin (1976).

Do gráfico 4.12a (Pullin et alli., 1976), sendo a corda do profundor e a espessura relativa dos perfis da empenagem os dados de entrada, tem-se o valor desta variação para o perfil bidimensional.

 $(a_2)_{ot} = 4,51 \text{ rad}^{-1}$

Da polar de sustentação do perfil NACA 0009 tem-se:

 $(a_1)_o = 6.45 \text{ rad}^{-1}$

Os números de Reynolds da empenagem horizontal ao longo de toda a faixa de velocidades de operação da aeronave estão apresentados na Tabela 9.13:

Tabela 9.13 – Números de Reynolds da empenagem horizontal

UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Re(eh) x 10^6	1,054	1,212	1,581	1,844	2,108	2,371	2,634	2,898	3,161	3,478	3,688	3,952	4,215

Figura 9.5_ Ângulo do bordo de fuga da empenagem horizontal

Do gráfico 4.1.b e 4.12a, sendo a espessura relativa do perfil (t/c) igual a 9% e sabendo que a corda do profundor está a 39,9% da corda da empenagem horizontal, obtém-se o $(a_2)_o$. Finalmente, a partir do gráfico 4.12b obtém-se o valor da variação do coeficiente de sustentação da empenagem horizontal com a deflexão do profundor corrigidos pelo efeito da fresta entre o profundor e a empenagem.

A Tabela 9.14 apresenta os valores de $(a_2)_M$ para as velocidades da faixa de operação da aeronave.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
(a2)m	2,116	2,126	2,126	2,131	2,142	2,194	2,197	2,202	2,208	2,217	2,228	2,254	2,260

Tabela 9.14 – Parâmetro $(a_2)_M$

O valor desta variação pode ainda ser corrigido devido aos efeitos de balanceamento do profundor. Porcentagem de balanceamento é a razão entre a área em planta do profundor à frente da articulação e a área em planta do mesmo atrás da articulação.

Desta forma,

% Balanceamento =
$$\frac{S_r}{S_f}$$
 = 39,51%

Do gráfico 4.11 c, tem-se:

f = 0,957

Dessa forma, a Tabela 9.15 apresenta a variação do coeficiente de sustentação da empenagem horizontal com a deflexão do profundor corrigida pelos efeitos da geometria do profundor.

Tabela 9.15 – Parâmetro a2 – variação do coeficiente de sustentação da empenagem horizontal com a

deflexão do profundor

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
a2	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163

9.3.4 Incidência da Empenagem Horizontal

A determinação da incidência da empenagem horizontal é um fator de extrema importância para se alcançar o mínimo arrasto em uma dada condição de vôo.

O coeficiente de sustentação de uma empenagem em relação a sua área, em função do seu ângulo de ataque e de deflexão do profundor, pode ser descrito pela seguinte equação:

$$C_{LEH} = a_1 \cdot (\alpha + i_T - \varepsilon - \alpha_{0T}) + a_2 \cdot \eta$$

Para determinar a incidência da empenagem, a deflexão do profundor deve ser nula na velocidade de cruzeiro da aeronave, assim:

$$i_T = -0,6783$$

9.3.5 Deflexões do Profundor

As deflexões do profundor são conseguidas através da equação apresentada no item anterior utilizando-se a incidência da empenagem horizontal determinada.

A Tabela 9.16 apresenta as deflexões do profundor necessárias para manter a aeronave em vôo equilibrado ao longo da faixa de velocidades que compreende a operação da aeronave.

Tabela 9.16 - Deflexões do Profundor

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
η [°]	-21,15	-15,36	-8,01	-5,18	-3,33	-2,03	-1,15	-0,50	0,00	0,45	0,69	0,92	1,12

9.4 Coeficientes de Arrasto

9.4.1 Área de Referência da Asa

A divisão de cada semi-asa em quatro áreas de referência possibilita melhoraria na precisão dos cálculos a serem realizados. Cada área tem a sua corda média, o seu enflexamento e o seu perfil representativo, que no caso do BRATI é constante ao longo da envergadura uma vez que este apresenta apenas um único perfil.

Figura 9.6 Asa seccionada para cálculo do arrasto.

9.4.2 Coeficiente de Arrasto Parasita da Asa

A partir dos dados experimentais dos perfis bidimensionais são obtidos os coeficientes de arrasto parasita da asa para cada seção de referência. O coeficiente de atrito da asa inteira é obtido ponderando-se os coeficientes de arrasto encontrados pelas áreas correspondentes. Assim, o coeficiente de arrasto parasita pode ser expresso por:

$$C_{\rm DoW} = \frac{\sum S_i \cdot C_{\rm Do}^{i\, perfil}}{S_e}$$

Sendo:

- C_{D0W} o coeficiente de arrasto parasita da asa
- S_i a área correspondente ao perfil i
- S_e a área efetiva da asa
- $C_{Do}^{i \, perfil}$ o coeficiente de arrasto do perfil bidimensional i

A Tabela 9.17 apresenta os valores dos coeficientes de arrasto parasita para a faixa de velocidades analisada.

Vel.				Re x			
[m/s]	Clw	n	С	10^6	Sr	Cdo	Cdow
		1	1,481	2,03E+00	1,213	0,006	-
20	2 4332	2	1,359	1,86E+00	1,783	0,0061	0 006482
20	2,4002	3	1,208	1,65E+00	1,586	0,0062	0,000402
		4	1,058	1,45E+00	1,396	0,0063	
		1	1,481	2,33E+00	1,213	0,0055	
23	1 017/	2	1,359	2,14E+00	1,783	0,0056	0 005055
23	1,3174	3	1,208	1,90E+00	1,586	0,0057	0,003933
		4	1,058	1,67E+00	1,396	0,0058	
		1	1,481	3,04E+00	1,213	0,0053	
30	1 2/01	2	1,359	2,79E+00	1,783	0,0054	0.005744
	1,2491	3	1,208	2,48E+00	1,586	0,0055	0,003744
		4	1,058	2,17E+00	1,396	0,0056	
		1	1,481	3,55E+00	1,213	0,0051	
25	0.0027	2	1,359	3,26E+00	1,783	0,0052	0 005596
	0,9937	3	1,208	2,89E+00	1,586	0,0054	0,000000
		4	1,058	2,53E+00	1,396	0,0055	
		1	1,481	4,06E+00	1,213	0,005	
40	0 9271	2	1,359	3,72E+00	1,783	0,0051	0 005453
40	0,0271	3	1,208	3,31E+00	1,586	0,0052	0,000400
		4	1,058	2,90E+00	1,396	0,0054	
		1	1,481	4,56E+00	1,213	0,0049	
45	0 7126	2	1,359	4,19E+00	1,783	0,005	0 005323
43	0,7120	3	1,208	3,72E+00	1,586	0,0051	0,000020
		4	1,058	3,26E+00	1,396	0,0052	
		1	1,481	5,07E+00	1,213	0,0048	
50	0 6305	2	1,359	4,65E+00	1,783	0,0049	0.005217
50	0,0305	3	1,208	4,14E+00	1,586	0,005	0,005217
		4	1,058	3,62E+00	1,396	0,0051	
55	0,5698	1	1,481	5,58E+00	1,213	0,0047	0,005112
		2	1,359	5,12E+00	1,783	0,0048	
		3	1,208	4,55E+00	1,586	0,0049	

Tabela 9.17 – Coeficiente de arrasto parasita da asa

UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

		4	1.058	3.98E+00	1.396	0,005	l
		1	1,481	6,08E+00	1,213	0,0046	
60	0 5007	2	1,359	5,58E+00	1,783	0,0047	0.005024
60	0,5237	3	1,208	4,96E+00	1,586	0,0048	0,005031
		4	1,058	4,34E+00	1,396	0,005	
		1	1,481	6,69E+00	1,213	0,0045	
66	0 4916	2	1,359	6,14E+00	1,783	0,0046	0 004001
00	0,4010	3	1,208	5,46E+00	1,586	0,0047	0,004901
		4	1,058	4,78E+00	1,396	0,0048	
		1	1,481	7,10E+00	1,213	0,0044	
70	0 4594	2	1,359	6,51E+00	1,783	0,0045	0 004796
10	0,4004	3	1,208	5,79E+00	1,586	0,0046	0,004730
		4	1,058	5,07E+00	1,396	0,0047	
		1	1,481	7,60E+00	1,213	0,005	
75	0.4366	2	1,359	6,98E+00	1,783	0,0051	0 005428
10	0,4000	3	1,208	6,20E+00	1,586	0,0052	0,000420
		4	1,058	5,43E+00	1,396	0,0053	
		1	1,481	8,11E+00	1,213	0,0048	
80	0 / 170	2	1,359	6,51E+00	1,783	0,0053	0 005553
	0,4179	3	1,208	5,79E+00	1,586	0,0054	0,0000000
		4	1,058	5,07E+00	1,396	0,0055	

9.4.3 Acréscimo de Arrasto Devido às Frestas do Aileron

O valor do arrasto parasita da asa deve ser acrescido em 6% devido aos efeitos da presença das frestas nas superfícies de comando.

A Tabela 9.18 apresenta os valores dos coeficientes de arrasto parasita e dos acréscimos devido a frestas para a faixa de velocidades analisada.

Tabela 9.18 – Coeficiente de arrasto parasita e acréscimos devido a frestas

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Cdow	0,006	0,006	0,006	0,006	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,006
$\Delta Cdow$ (E-04)	3,9	3,6	3,4	3,4	3,3	3,2	3,1	3,1	3,0	2,9	2,9	3,3	3,3

9.4.4 Coeficiente de Arrasto Induzido da Asa

O coeficiente de arrasto induzido da asa é dado por:

$$C_{\text{DiW}} = \frac{C_{\text{LW}}^2}{\pi \cdot A} \cdot \left(1 + \delta_1 \cdot \delta_2\right)$$

Sendo:

- C_{DiW} o coeficiente de arrasto induzido da asa
- C_{LW} o coeficiente de sustentação da aeronave
- A o alongamento da asa = 8,507
- δ_1 o fator de correção obtido do gráfico 6.2.12 (Pullin) = 0,041
- δ_2 o fator de correção obtido gráfico 6.2.13 (Pullin) = 1

A Tabela 9.19 apresenta os valores dos coeficientes de arrasto induzido para a faixa de velocidades analisada.

Tabela 9.19 - Coeficiente de arrasto induzido da asa

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Cdiw	0,231	0,143	0,061	0,038	0,027	0,020	0,015	0,013	0,011	0,009	0,008	0,007	0,007

9.4.5 Coeficiente de Arrasto Parasita da Fuselagem

Para determinação do arrasto parasita da fuselagem é necessário conhecer as áreas molhadas, as quais já foram obtidas anteriormente, sendo seus respectivos valores:

$$S_{MA} = 6,03 \text{ m}^2$$
 e $S_{MC} = 8,08 \text{ m}^2$

Além disso, é necessário também encontrar o fator de forma, que será obtido do gráfico 6.4.6 (Pullin) utilizando a esbeltez como dado de entrada. Assim:

$$E_e = \frac{l_f}{D} = 6,6$$
 e F = 1,19

Com isso, inicia-se o cálculo do arrasto parasita da fuselagem.

 $C_{Dof} = C_{Doa} + C_{Dob} + C_{Doc} + \Delta C_{Do_{\Lambda F}} + \Delta C_{Do_{canopy}}$

Sendo:

• C_{Dof} o coeficiente de arrasto parasita da fuselagem

- C_{Doa}, C_{Dob} e C_{Doc} os coeficientes de arrasto correspondentes às áreas a, b e c
- ΔC_{DoAF} o acréscimo de arrasto devido ao enflexamento do bordo de fuga da fuselagem
- $\Delta C_{\text{Docanopy}}$ o acréscimo de arrasto devido ao canopy

Onde:

$$C_{Doa} = \frac{C_f \cdot F \cdot S_M^A}{S} \qquad C_{Dob} = \frac{C_f \cdot F \cdot S_M^B}{S} \qquad C_{Doc} = \frac{C_f \cdot F \cdot S_M^C}{S}$$
$$\Delta C_{Do_{AF}} = \frac{K}{100} \cdot C_{Doc} \qquad \Delta C_{Do_{canopy}} = 0,07.\frac{S_{canopy}}{S}$$

Sendo:

- C_f o coeficiente de atrito médio
- F o fator de forma
- S_M as áreas molhadas (A, B e C)
- S a área alar
- S_{canopy} a área frontal do canopy

O atrito médio pode ser determinado através do gráfico 6.4.5 (Pullin) em função do número de Reynolds, do comprimento da fuselagem e do tamanho médio do grão da rugosidade da superfície da mesma (fator K). Para a determinação desse fator foi utilizada a tabela 6.4.1 (Pullin) que é de $4x10^{-6}$ para metal com acabamento natural.

O C_{Dob} foi eliminado já que a fuselagem do BRATI não possui regiões cilíndricas.

A Tabela 9.20 apresenta os valores dos coeficientes de arrasto parasita da fuselagem.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Re(f) x10^6	10,08	11,59	15,12	17,63	20,15	22,67	25,19	27,71	30,23	33,25	35,27	37,79	40,31
Cf	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,002
Cdoa	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Cdoc	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
∆Cdcanopy							0,0017						
Cdob	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005

Tabela 9.20 – Coeficiente de arrasto parasita da fuselagem

9.4.6 Coeficiente de Arrasto Induzido da Fuselagem

O coeficiente de arrasto induzido da fuselagem pode ser determinado através da equação:

$$C_{Dif} = \frac{\alpha_f - \alpha_{of}}{57.3} \cdot C_{Lf}$$

Sendo:

- C_{Dif} o coeficiente de arrasto induzido da fuselagem
- α_{0F} o ângulo de sustentação nula da fuselagem
- α_F o ângulo de ataque da fuselagem
- C_{Lf} o coeficiente de sustentação da fuselagem

Mas como o BRATI apresenta o $\alpha_{0F} = 0$ pode-se escrever:

$$C_{Dif} = \frac{\alpha_f}{57.3} \cdot C_{Lj}$$

A Tabela 9.21 apresenta os valores dos coeficientes de arrasto induzido da fuselagem.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
α [°]	28,18	20,96	11,61	8,03	5,69	4,09	2,94	2,08	1,44	0,84	0,53	0,20	-0,06
Clb	0,116	0,076	0,035	0,023	0,015	0,011	0,007	0,005	0,003	0,002	0,001	0,000	0,000
Cdib	0,057	0,028	0,007	0,003	0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Tabela 9.21 – Coeficiente de arrasto induzido da fuselagem

9.4.7 Acréscimo de Arrasto Devido ao Fluxo da Hélice

Charmichael (1994) propõe que o acréscimo de arrasto na fuselagem devido ao fluxo da hélice seja entre 7% (conforme Hoerner) e 5% (conforme Holmes) do arrasto total da fuselagem.

A Tabela 9.22 apresenta os valores dos coeficientes de arrasto e acréscimos da fuselagem.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Cdob	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Cdib	0,057	0,028	0,007	0,003	0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
∆Cdb	0,003	0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Tabela 9.22 – Coeficiente de arrasto da fuselagem

9.4.8 Coeficientes de Arrasto Parasita da Empenagem Horizontal

Para a determinação destes coeficientes, diferentemente do procedimento proposto por Pullin (1976), deve-se levar em consideração não só o coeficiente de sustentação da empenagem, mas também a deflexão do profundor.

Para se obter os coeficientes de sustentação da empenagem, em relação sua própria área, deve-se obter o produto destes coeficientes em relação à razão entre a área da empenagem e a área da asa.

A deflexão do profundor considerada deve ser a que mantém a aeronave em vôo equilibrado para cada condição de vôo.

A Tabela 9.23 apresenta os valores dos coeficientes de arrasto parasita da empenagem bem como os valores dos parâmetros utilizados no cálculo.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Clseh	0,234	0,180	0,111	0,085	0,069	0,057	0,049	0,043	0,038	0,034	0,031	0,029	0,027
η [°]	-21,15	-15,36	-8,01	-5,18	-3,33	-2,03	-1,15	-0,50	0,00	0,45	0,69	0,92	1,12
Cdos(eh)	0,019	0,015	0,010	0,009	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,007
Cdo(eh)	0,004	0,003	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001

Tabela 9.23 – Coeficiente de arrasto parasita da empenagem horizontal

9.4.9 Coeficientes de Arrasto Induzido da Empenagem Horizontal

Segundo Pullin (1976) o coeficiente de arrasto induzido da empenagem horizontal pode ser determinado analogamente ao mesmo coeficiente da asa.

$$C_{\text{DIEH}} = \frac{C_{\text{LEH}}^2}{\pi \cdot A_{\text{EH}}} \cdot \left(1 + \delta_1 \cdot \delta_2\right)$$

Sendo:

- C_{DiEH} o coeficiente de arrasto induzido da empenagem horizontal
- C_{LEH} o coeficiente de sustentação da empenagem horizontal
- A_{EH} o alongamento da empenagem horizontal
- δ_1 o fator de correção obtido do gráfico 6.2.12 (Pullin) = 0,010
- δ_2 o fator de correção obtido gráfico 6.2.13 (Pullin) = 1

A Tabela 9.24 apresenta os valores dos coeficientes de arrasto induzido da empenagem horizontal.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Cleh	0,044	0,034	0,021	0,016	0,013	0,011	0,009	0,008	0,007	0,006	0,006	0,005	0,005
Cdieh	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

 Tabela 9.24 – Coeficiente de arrasto induzido da empenagem horizontal

9.4.10 Coeficientes de Arrasto da Empenagem Vertical

O coeficiente de arrasto da empenagem vertical é determinado apenas pela sua parcela de arrasto parasita, tendo em vista que para vôo simétrico a sustentação em sua superfície é nula.

Deve-se observar que para todas as velocidades, a deflexão do leme e o ângulo de ataque da empenagem vertical são nulos, sendo a variação dos seus coeficientes de arrasto proporcionada apenas pela variação do seu número de Reynolds.

O coeficiente de arrasto da empenagem vertical pode ser calculado por:

$$C_{D_{EV}} = C_{Dp} \cdot \frac{S_{EV}}{S}$$

Sendo:

- C_{Dp} o coeficiente de arrasto com $\alpha = 0^{\circ}$
- $S_{EV} =$ área da empenagem vertical = 0,983 m²
- $S = \text{área alar} = 12,96 \text{ m}^2$

O C_{Dp} foi obtido através da curva C_L X C_D do perfil da empenagem vertical, que no caso do BRATI é o NACA 0009, quando $\alpha = 0^{\circ}$.

A Tabela 9.25 apresenta os valores dos coeficientes de arrasto da empenagem vertical.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Ref x10^6	1,358	1,562	2,037	2,376	2,716	3,055	3,395	3,734	4,074	4,481	4,753	5,092	5,432
Cds(ev)	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008
Cd(ev) (E-04)	5,99	5,99	5,99	5,99	5,99	5,99	5,99	5,99	5,99	5,99	5,99	5,99	5,99

Tabela 9.25 – Coeficiente de arrasto da empenagem vertical

9.4.11 Acréscimos dos Coeficientes de Arrasto Devido aos Efeitos de Interferência

Os efeitos de interferência a serem analisados neste projeto são interferência devido ao conjunto asa – fuselagem e interferência devido ao conjunto fuselagem – empenagem.

9.4.11.1 Interferência do Conjunto Asa – Fuselagem

Para essa análise será adotado o procedimento proposto por Pullin (1976), onde o acréscimo do arrasto da aeronave devido à interferência asa-fuselagem é considerado como sendo da ordem de 5% do arrasto total da fuselagem.

Desta forma, essa interferência pode ser determinado a partir da seguinte equação:

$$\Delta C_{DW-F} = 0.05 \cdot \left[C_{Dof} + C_{Dif} \right]$$

A Tabela 9.26 apresenta os valores dos coeficientes de arrasto e acréscimo para a fuselagem.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Cdob	0,0058	0,0057	0,0055	0,0053	0,0052	0,0051	0,0050	0,0050	0,0049	0,0048	0,0048	0,0048	0,0047
Cdib	0,0569	0,0280	0,0072	0,0032	0,0015	0,0008	0,0004	0,0002	0,0001	0,0000	0,0000	0,0000	0,0000
$\Delta Cdw-b$	0,0031	0,0017	0,0006	0,0004	0,0003	0,0003	0,0003	0,0003	0,0002	0,0002	0,0002	0,0002	0,0002

Tabela 9.26 – Coeficiente de arrasto da fuselagem

9.4.11.2 Interferência do Conjunto Fuselagem – Empenagem

Essa interferência é dada por:

$$\Delta C_{D \,\text{f-ev}} = n_1 \cdot (0.8 \cdot t^3 - 0.0005) \cdot \frac{c_j^2}{S}$$

Sendo:

• n_1 o n° de cantos na junção empenagem – fuselagem

- t a espessura relativa da empenagem, na junção
- c_i a corda da empenagem na junção
- S a área (de referência) da asa

Assim

$$\Delta C_{Df-ev} = 0,00040$$

9.4.12 Arrasto do Trem de Pouso Principal

O cálculo do acréscimo de arrasto devido à presença do conjunto de trem de pouso na aeronave será realizado por um procedimento proposto por Jones (1979). Neste procedimento o coeficiente de arrasto de um conjunto de trem de pouso convencional, fixo e carenado é obtido segundo a equação abaixo.

$$C_{\rm DTP} = C_{\rm DF} + C_{\rm DWH} + C_{\rm DSS}$$

Sendo:

- C_{DTP} ao coeficiente de arrasto do trem de pouso principal
- C_{DF} a parcela devido as polainas
- C_{DWH} a parcela devido a parte exposta da roda
- C_{DSS} a parcela devido as pernas estruturais do trem de pouso

A parcela do coeficiente de arrasto devido à polaina é admitida por Jones (1979) como 7% da razão entre a área frontal da polaina e a área da asa.

$$C_{DF} = 0.07 \cdot \frac{S_{FF}}{S}$$

A parcela do coeficiente de arrasto devido à porção da roda exposta será desconsiderada neste projeto em função da pequena parcela de roda exposta.

As parcelas devido às pernas do trem de pouso são obtidas por:

$$C_{\rm DSS} = C_{\rm DoSS} + \Delta C_{\rm DSB} + \Delta C_{\rm DSF}$$

Sendo:

- C_{DoSS} a parcela devido ao arrasto parasita da perna
- ΔC_{DSB} a parcela devido a interferência entre a perna e a fuselagem
- ΔC_{DSF} a parcela devido a interferência entre a perna e a polaina

A parcela C_{DoSS}, já em relação à área da asa, é obtida por:

$$C_{DoSS} = c_{DSS} \cdot \frac{1 \cdot c}{S}$$

Onde o fator C_{DSS} obtido através da equação abaixo.

$$c_{\rm DSS} = 0.00495 \cdot \left[1 + 2\left(\frac{t}{c}\right) + 60\left(\frac{t}{c}\right)^4 \right]$$

A parcela devido à interferência com a fuselagem e a polaina são obtidas através da seguinte equação.

$$\Delta C_{\rm D} = K_2 \cdot \left(\frac{t}{c}\right)^2 \cdot \frac{t^2}{S}$$

Onde K_2 é obtido através da figura 12 (Jones, 1979), sendo função do ângulo formado entre a perna e o objeto no qual se mede a interferência e a posição da perna em relação a este objeto.

Assim, a Tabela 9.27 apresenta os coeficientes calculados para o arrasto do trem de pouso.

CdF	0,0004840
Cdoss	0,0000108
$\Delta Cdsb$	0,000006
$\Delta Cdsf$	0,000029
CdTP	0,0009964

 Tabela 9.27 – Coeficientes de arrasto do trem de pouso principal

9.4.13 Arrasto Devido a Coleta de Ar

Segundo Pullin (1976), o arrasto devido à coleta de ar para o motor é obtido através da seguinte equação:

$$C_{\text{Dcol}} = \frac{\dot{\mathbf{m}} \cdot \mathbf{V}}{\mathbf{q} \cdot \mathbf{S}}$$

Sendo:

- V a velocidade de cruzeiro
- q a pressão dinâmica
- \dot{m} o fluxo de massa de ar coletado. Para motores a pistão $\dot{m} = 0.0006P\left[\frac{Kgf.s}{m}\right]$ (onde P é a potência do motor em hp). Como a aeronave BRATI possui um motor de 118 hp, $\dot{m} = 0.0708\left[\frac{Kgf.s}{m}\right]$.

Então:

 $C_{Dcol} = 0,00148$

9.4.14 Coeficientes da Aeronave Completa

Os coeficientes de arrasto da aeronave completa serão obtidos pelo somatório de todos os componentes do coeficiente de arrasto calculados.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
Cdow	0,006482	0,005955	0,005744	0,005586	0,005453	0,005323	0,005217	0,005112	0,005031	0,004901	0,004796	0,005428	0,005553
Cdiw	0,230610	0,143208	0,060779	0,038459	0,026645	0,019777	0,015486	0,012647	0,010681	0,009034	0,008221	0,007424	0,006804
$\Delta C dow$	0,000389	0,000357	0,000345	0,000335	0,000327	0,000319	0,000313	0,000307	0,000302	0,000294	0,000288	0,000326	0,000333
Cdob	0,005779	0,005682	0,005490	0,005297	0,005201	0,005104	0,005008	0,005008	0,004912	0,004816	0,004816	0,004816	0,004719
Cdib	0,056868	0,027950	0,007173	0,003177	0,001514	0,000751	0,000377	0,000186	0,000086	0,000029	0,000011	0,000002	0,000000
∆Cdb	0,003132	0,001682	0,000633	0,000424	0,000336	0,000293	0,000269	0,000260	0,000250	0,000242	0,000241	0,000241	0,000236
Cdo(eh)	0,003548	0,002745	0,001811	0,001587	0,001494	0,001475	0,001456	0,001438	0,001419	0,001400	0,001419	0,001400	0,001382
Cdi(eh)	0,000126	0,000075	0,000029	0,000017	0,000011	0,000007	0,000005	0,000004	0,000003	0,000003	0,000002	0,000002	0,000002
Cdo(ev)	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599	0,000599
$\Delta Cdw-b$	0,003132	0,001682	0,000633	0,000424	0,000336	0,000293	0,000269	0,000260	0,000250	0,000242	0,000241	0,000241	0,000236
$\Delta Cdb-ev$	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402	0,000402
Cdtp	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996	0,000996
Cdc	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480	0,001480
Cd	0,313542	0,192813	0,086114	0,058783	0,044793	0,036820	0,031879	0,028699	0,026413	0,024439	0,023513	0,023356	0,022743

Tabela 9.28 – Arrasto total da aeronave

9.5 Coeficientes Calculados

Tabela 9.29 – Coeficientes calculados

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
CL	2,3172	1,7521	1,0299	0,7566	0,5793	0,4577	0,3707	0,3064	0,2575	0,2128	0,1892	0,1648	0,1448
Cd	0,313542	0,192813	0,086114	0,058783	0,044793	0,036820	0,031879	0,028699	0,026413	0,024439	0,023513	0,023356	0,022743

9.6 Razão de Planeio e Velocidade de Afundamento

As velocidades de afundamento de uma aeronave são obtidas através da razão da velocidade de avanço pela razão de planeio da aeronave, sendo que tal razão é definida como a razão entre os coeficientes de sustentação e arrasto para uma dada velocidade.

 $E = \frac{C_L}{C_D}$

 $V_y = \frac{V}{E}$

A Tabela 9.30 apresenta os valores de razão de planeio e velocidade de afundamento obtidos para a presente aeronave.
UNIVERSIADE FEDERAL DE MINAS GERAIS – UFMG

Departamento de Engenharia Mecânica – DEMEC Centro de Estudos Aeronáuticos – CEA Projetos de Aeronaves I – Prof. Paulo Iscold

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
E	7,4	9,1	12,0	12,9	12,9	12,4	11,6	10,7	9,7	8,7	8,0	7,1	6,4
Vy [m/s]	-2,71	-2,53	-2,51	-2,72	-3,09	-3,62	-4,30	-5,15	-6,16	-7,58	-8,70	-10,63	-12,56

Tabela 9.30 - Razão de planeio e velocidade de afundamento

9.7 Gráficos

Figura 9.7 – Gráfico do coeficiente de sustentação em função do ângulo de ataque

Figura 9.8 – Gráfico da polar de arrasto

Figura 9.10 – Gráfico da contribuição das parcelas do coeficiente de arrasto para o valor global

Figura 9.11 – Gráfico da contribuição das parcelas de arrasto para o valor global

10 DESEMPENHO

10.1 Dados De Entrada

As informações necessárias para o desenvolvimento desse trabalho estão relacionadas a seguir:

10.1.1 Dados da Aeronave

- Envergadura 10,50 m
- Comprimento da fuselagem 7,36 m
- Área Alar 12,96 m2
- Peso máximo de decolagem 750 kg
- Tanque de Combustível integral na asa com capacidade de 138 litros

10.1.2 Dados da Hélice

- Hélice bi-pá
- Madeira
- Passo fixo
- Marca Clark-Y
- Diâmetro = 1,70 m

Figura 10.2 - Curvas de eficiência da hélice

10.1.3 Dados do Motor

- Marca Textron Lycoming O-235-L
- Potência máxima = 118 hp
- Máxima rotação = 2800 rpm
- Rotação a 75% de potência = 1569rpm

A seguir curvas do motor Lycoming AEIO235 utilizado, contendo a curva de potência e de consumo mínimo.

LYCOMING AIRCRAFT ENGINE PERFORMANCE DATA

Figura 10.3 - Curvas de potência x rotação do motor lycoming O-235

Figura 10.4 - Curvas de consumo mínimo x potência do motor lycoming O-235

10.1.4 Dados Extras

- Densidade do ar ao nível do mar 1,225 kgf/m3
- Densidade da gasolina (combustível utilizado pela aeronave) 700 kg/m3

10.1.5 Polar de Arrasto da Aeronave

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
α [°]	28,18	20,96	11,61	8,03	5,69	4,09	2,94	2,08	1,44	0,84	0,53	0,20	-0,06
CI	2,32	1,75	1,03	0,76	0,58	0,46	0,37	0,31	0,26	0,21	0,19	0,16	0,14
Cd	0,31	0,19	0,09	0,06	0,04	0,04	0,03	0,03	0,03	0,02	0,02	0,02	0,02

 Tabela 10.1 – Coeficientes de sustentação e arrasto para diferentes velocidades

Figura 10.5 - Polar de Arrasto da Aeronave

10.2 Introdução

Neste relatório serão apresentados os cálculos referentes ao desempenho do projeto da aeronave BRATI. As características encontradas nos cálculos aerodinâmicos serão utilizadas para determinar-se as seguintes curvas e velocidades:

- Curvas de "Potência X Velocidade" à Plena Potência
- Curvas de "Potência X Velocidade" à 75% da Potência Plena
- Velocidade de Cruzeiro
- Velocidade Máxima
- Velocidade de Estol
- Curva de "Razão de Subida X Velocidade" à Potência Plena
- Curva de "Razão de Subida X Velocidade:" à 75% da Potência Plena
- Razão de Subida Máxima
- Velocidade de Máxima Razão de Subida
- Velocidade de Máximo Ângulo de Subida
- Autonomia
- Velocidade de Autonomia Máxima
- Alcance Máximo
- Velocidade de Alcance Máximo

10.2.1 Condições de vôo propostas

- Vôo de Cruzeiro
- Nível do Mar
- Potência Máxima e 75% de Potência

10.3 Cálculo da Potência Requerida (PREQ)

Para o cálculo da potência requerida da aeronave, em vôo reto nivelado, foi utilizada a seguinte expressão:

$$P_{req} = W. \sqrt{\frac{2 \times W}{\rho \times S}} \times \frac{C_D}{C_L^{3/2}} \qquad (\text{Pullin, 1976})$$

Onde:

P_{req} = potência requerida ao nível do mar [W]

W = peso máximo de decolagem [N]

 ρ = densidade do ar para a condição de vôo considerada [kgf/m³]

S =área alar $[m^2]$

Os valores de Potência Requerida para as diversas velocidades de vôo da aeronave estão apresentados na Tabela 10.2.

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
CI	2,32	1,75	1,03	0,76	0,58	0,46	0,37	0,31	0,26	0,21	0,19	0,16	0,14
Cd	0,31	0,19	0,09	0,06	0,04	0,04	0,03	0,03	0,03	0,02	0,02	0,02	0,02
Preq [kW]	19,91	18,62	18,46	20,01	22,76	26,63	31,63	37,90	45,29	55,77	64,02	78,22	92,43

Tabela 10.2 - Potência requerida em função da velocidade

10.4 Determinação da Razão de Avanço da Hélice (J):

A partir da determinação da razão de avanço da hélice (J) será possível encontrar o rendimento dessa hélice. Dessa forma, a razão de avanço da hélice poderá ser obtida a partir da seguinte expressão:

$$J = \frac{V}{n.D}$$

Onde:

J = razão de avanço da hélice

V = velocidade de avanço [m/s]

n = rotação da hélice [rps]

D = diâmetro da hélice [m]

Os cálculos serão feitos para o motor e a hélice anteriormente descritos. As razões de avanço da hélice serão determinadas para as condições de vôo propostas.

Tabela 10.3 – Razões de avanço da hélice

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
J max	0,28	0,35	0,42	0,48	0,54	0,60	0,65	0,69	0,76	0,82	0,88	0,95	1,01
J75%	0,33	0,40	0,48	0,54	0,61	0,66	0,71	0,75	0,78	0,82	0,88	0,95	1,01

10.5 Determinação do Rendimento da Hélice (ηP):

A hélice selecionada será de passo fixo e bi-pá, como dito anteriormente. Será feito o cálculo para as condições de potência máxima e 75% de potência.

Além disso, será utilizada a curva de rendimento com $\beta = 20^{\circ}$ apresentada no Report da NACA n° 640 (Figura 10.2).

Com o gráfico de eficiência da hélice e tendo calculado a razão de avanço, é possível obter-se o rendimento da mesma através da leitura do gráfico.

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
ηmax	0,50	0,57	0,63	0,69	0,74	0,78	0,80	0,82	0,83	0,86	0,84	0,78	0,70
η 75%	0,53	0,60	0,68	0,74	0,77	0,80	0,82	0,84	0,85	0,86	0,84	0,78	0,70

Tabela 10.4 - Rendimentos da hélice

10.6 Determinação da Potência Disponível (Pdis):

A potência absorvida pela hélice pode ser calculada através da seguinte equação:

$$C_{p} = \frac{P}{\rho \cdot n^{3} \cdot D^{5}} \qquad (\text{NACA_TR_640})$$
$$\therefore P = C_{p} \cdot \rho \cdot n^{3} \cdot D^{5}$$

onde:

C_p = coeficiente de pressão

P = potência absorvida pela hélice [W]

 ρ = densidade do ar [kg/m³

n = rotação [rps]

D = diâmetro da hélice [m]

Os valores de C_p serão tirados da Figura 10.1 apresentada acima.

Para obter a potência absorvida pela hélice chuta-se o diâmetro e o passo da hélice, os quais já foram citados acima. Além disso, escolhe-se também uma porcentagem de abertura de borboleta e uma rotação. No presente projeto o chute inicial foi de 100% de borboleta aberta para o caso de potência máxima e 75% de borboleta aberta para o caso de 75% de potência.

Depois de 9 iterações para potência máxima e 11 para o caso de 75% de potência chegase às seguintes porcentagens de abertura de borboleta e rotações.

Tabela 10.5 – Porcentagem de a	ertura de borboleta e rotações alcançada
--------------------------------	--

V [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
% ab de bor.(máx)	100	100	100	100	100	100	100	98	86	72	55	37	17
n válida(máx) [rpm]	2478	2499	2523	2555	2599	2655	2725	2817	2939	3122	3408	3906	5041
% ab de bor.(75%)	75	75	75	75	75	75	75	75	75	72	55	37	17
n válida(75%) [rpm]	2168	2191	2223	2267	2327	2402	2491	2591	2701	2837	3097	3549	4580

Com a rotação alcançada pelo motor e a partir da curva da Figura 10.3 tem-se a potência absorvida pela hélice.

							1						
Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
Pabs hélice (máx) [kW]	76,65	77,23	77,89	78,75	79,90	81,38	83,18	84,23	74,15	61,87	47,55	31,60	14,69
Pabs hélice (75%) [kW]	50,76	51,30	52,01	52,99	54,29	55,90	57,76	59,78	61,91	61,87	47,55	31,60	14,69

Tabela 10.6 – Potências absorvida pela hélice

Com o valor da potência absorvida pela hélice e o rendimento da mesma temos então o valor da potência disponível do motor.

$P_{dis} = P \cdot \eta$

A Potência Disponível também será calculada para as condições de potência máxima e 75% de potência.

Tabela 10.7 – Potências disponíveis

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
Pdis(max) [kW]	38,33	44,02	49,07	54,34	59,13	63,48	66,54	69,07	61,55	53,21	39,94	24,64	10,29
Pdis(75%) [kW]	26,90	30,78	35,36	39,21	41,81	44,72	47,36	50,21	52,62	53,21	39,94	24,64	10,29

10.6.1 Curva de "Potência x Velocidade"

A partir dos dados obtidos acima é possível plotar o gráfico de potências disponíveis e requerida. Sendo que serão apresentadas duas curvas de potência disponível, para potência máxima e para 75% de potência do motor.

Figura 10.6 - Potência Requerida x Potência Disponível

10.6.2 Resultados obtidos

A velocidade máxima para cada situação proposta pode ser obtida através da interseção das curvas de potência requerida com as de potência disponível. Além da velocidade máxima é possível também determinar a velocidade de estol para as duas situações. Essa também será conseguida a partir da interseção das curvas. Isso é possível já que a curva de potência requerida é cortada pelas curvas de potência disponível duas vezes, uma para um valor mais baixo de x (Velocidade de Estol) e outra para um valor mais alto (Velocidade Máxima).

- Vel. máxima com 100% de pot. para vôo de cruzeiro ao nível do mar 64 m/s
- Vel. máxima com 75% de pot. para vôo de cruzeiro ao nível do mar 60,5 m/s
- Vel. de estol com 100% de pot. para vôo de cruzeiro ao nível do mar 16,6 m/s

• Vel. de estol com 75% de pot. para vôo de cruzeiro ao nível do mar – 20 m/s Deve-se observar que o valor de velocidade de estol obtido através da Figura 4 é menor que o valor de velocidade de estol determinado na estimativas preliminares. Desta forma a velocidade de estol da aeronave continua sendo determinada pelas suas características aerodinâmicas, sendo esta igual a 23 m/s – 82,8 km/h.

10.7 Determinação da Razão de Subida ("Vv")

A razão de subida pode ser calculada da seguinte forma segundo Pullin:

$$V_{v} = \frac{P_{dis} - P_{req}}{W}$$
 (Pullin, 1976)

Onde:

 V_v = razão de subida [m/s] W = peso da aeronave [N] P_{dis} = potência disponível [W] P_{req} = potência requerida [W]

Tabela 10.8 – Razões de Subida

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
Vvmax [m/s]	2,50	3,45	4,16	4,67	4,94	5,01	4,74	4,24	2,21	-0,35	-3,27	-7,28	-11,17
Vv75% [m/s]	0,95	1,65	2,30	2,61	2,59	2,46	2,14	1,67	1,00	-0,35	-3,27	-7,28	-11,17

A partir dos dados obtidos é possível plotar o gráfico de "Razão de Subida x Velocidade".

Figura 10.7 - Razão de Subida x Velocidade

O ângulo de subida da aeronave em uma dada condição de vôo pode ser calculado de acordo com a equação abaixo.

$$\operatorname{sen} \gamma = \frac{V_{\rm V}}{\rm V}$$

Os valores de angulo de subida para a presente aeronave são apresentado na abaixo.

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
γ(max) [°]	7,19	7,94	7,97	7,66	7,10	6,39	5,45	4,42	2,11	-0,31	-2,68	-5,57	-8,02
γ(75%) [°]	2,72	3,79	4,39	4,28	3,71	3,13	2,45	1,74	0,95	-0,31	-2,68	-5,57	-8,02

Tabela 10.9 – Ângulos de Subida

Graficamente, o valor de ângulo de subida máximo da aeronave é representado pela inclinação da reta que parte da origem a tangência a curva de razão de subida apresentada na figura 5.

10.7.1 Resultados obtidos

Com o gráfico acima é possível determinar a máxima razão de subida e velocidade de máxima razão de subida para as diversas situações propostas.

- Máxima razão de subida com 100% de pot. no cruzeiro 5,01 m/s
- Máxima razão de subida com 75% de pot. no cruzeiro 2,61 m/s
- Velocidade de máxima de razão de subida com 100% de pot. no cruzeiro 45 m/s
- Velocidade de máxima de razão de subida com 75% de pot. no cruzeiro 35 m/s

Graficamente, o valor de angulo de subida máximo da aeronave é representado pela inclinação da reta que parte da origem a tangência a curva de razão de subida apresentada na Figura 2.5. Para a presente aeronave os valores obtidos são:

- Máximo ângulo de subida com 100% de pot. no cruzeiro 7,97°
- Máximo ângulo de subida com 75% de pot. no cruzeiro 4,39°
- Velocidade de máximo ângulo de subida com 100% de pot. no cruzeiro 30 m/s
- Velocidade de máximo ângulo de subida com 75% de pot. no cruzeiro 30 m/s

10.8 Determinação da Autonomia da ("E" Endurance)

A autonomia poderá ser calculada pela expressão de Breguet:

$$E = \frac{\eta_p}{C_p} \cdot \sqrt{\rho \cdot S} \cdot \frac{C_L^{3/2}}{C_D} \cdot \left(\frac{1}{\sqrt{W_i}} - \frac{1}{\sqrt{W_o}}\right) \qquad (\text{Pullin, 1976})$$

Onde:

- E: autonomia
- p: densidade do ar

S: área alar

Cp: consumo específico

ηp: rendimento da hélice

Wo: peso máximo de decolagem em 1000kgf

W1: peso máximo com os tanques vazios em 1000kgf

Para o cálculo do consumo específico utiliza-se a Figura 2.4 para se determinar o consumo mínimo com a potência disponível como referência. Tem-se assim o consumo mínimo do motor apresentado na Tabela abaixo para os dois casos:

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
Pabs hélice (máx) [kW]	102,79	103,56	104,45	105,61	107,15	109,13	111,54	112,96	99,44	82,96	63,76	42,37	19,70
Com(máx) [gal/h]	8,60	8,75	8,80	8,95	9,10	9,30	9,40	9,45	8,45	6,30	4,80	4,00	4,00
Com(máx) [m^3/h]	0,03	0,03	0,03	0,03	0,03	0,04	0,04	0,04	0,03	0,02	0,02	0,02	0,02
Pabs hélice (75%) [kW]	68,07	68,79	69,74	71,06	72,81	74,97	77,45	80,17	83,02	82,96	63,76	42,37	19,70
Con(75%) [gal/h]	2,40	2,53	2,61	2,95	3,23	3,42	3,76	4,27	4,76	4,62	4,15	4,00	4,00
Con(75%) [m^3/h]	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02

Tabela 10.10 – Consumo mínimo do motor Lycoming O-235

Com o valor do consumo mínimo, da densidade da gasolina utilizada e da potência absorvida pela hélice tem-se o consumo específico da aeronave.

$$C_p = \frac{consumo}{potência} \cdot \rho_{gasolina}$$

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
Cp(máx) [N/W.h]	0,0029	0,0029	0,0029	0,0030	0,0030	0,0030	0,0029	0,0029	0,0030	0,0026	0,0026	0,0033	0,0071
Cp(75%) [N/W.h]	0,0012	0,0013	0,0013	0,0014	0,0015	0,0016	0,0017	0,0019	0,0020	0,0019	0,0023	0,0033	0,0071

Com os valores de consumo específico, rendimento da hélice, já obtido anteriormente e com o peso da aeronave com os tanques vazios é possível calcular a autonomia para os dois casos propostos, os quais são apresentados na tabela abaixo:

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
E(max) [h]	6,39	7,72	8,63	8,67	8,16	7,32	6,39	5,51	4,59	4,33	3,71	2,25	0,79
E(75%) [h]	16,09	18,66	20,97	18,98	16,25	14,03	11,38	8,86	6,97	5,90	4,29	2,25	0,79

Tabela 2.12 – Autonomia

Figura 10.8 - Autonomia x Velocidade

10.8.1 Resultados obtidos

Berguet propõe que o valor da autonomia da aeronave em projeto seja considerado apenas 85% do valor obtido por sua formulação, devido à dificuldade de se manter o vôo em regime constante durante um maior intervalo de tempo. Desta forma, os valores de autonomia máxima da aeronave serão de:

Com o gráfico acima descrito é possível obter:

- Autonomia máxima com 100% de pot. para cruzeiro 7,37 h
- Velocidade correspondente 35 m/s
- Autonomia máxima com 75% de pot. para cruzeiro 17,83 h
- Velocidade correspondente 30 m/s

10.9 Cálculo do Alcance – R (Range):

Será feita através da formulação de Breguet:

$$R = 603 \times \frac{\eta_P}{C_P} \times \frac{C_L}{C_D} \times \ln \frac{W_0}{W_1}$$
(Pullin, 1976)

Onde:

R: alcance [km]

Cp: consumo específico de combustível

ηp: rendimento da hélice

Wo: peso máximo de decolagem

W1: peso máximo com tanques vazios

Tabela	10.13	– Autonomia
--------	-------	-------------

Vel. [m/s]	20	25	30	35	40	45	50	55	60	65	70	75	80
A(max) [km]	628	872	1272	1491	1603	1619	1571	1489	1355	1403	1277	829	312
A(75%) [Km]	1581	2109	3092	3264	3194	3102	2795	2396	2056	1913	1477	829	312

Figura 10.9 - Alcance x Velocidade

10.9.1 Resultados obtidos

Da mesma forma que para a autonomia Berguet propõe que o valor admitido de alcance para a aeronave em estudo seja 85% do valor obtido pela sua formulação.

Através do gráfico anterior pode-se obter:

- Alcance máximo com 100% de pot. para cruzeiro 1376 km
- Velocidade correspondente 45 m/s
- Alcance máximo com 75% de Pmáx para cruzeiro 2774 km
- Velocidade correspondente 35 m/s

10.10 Cálculo da Distância da Corrida de Pouso

Figura 10.10 – Distância de Pouso

onde:

dgl = planeio a partir de uma altitude padrão (pela norma a altura I, deve ser igual a 15 m)

ddeac = distância de desaceleração no vôo

dg = distância de desaceleração em solo

Define-se então os seguinte parâmetros:

 V_{50} = velocidade no ponto do obstáculo de 15m V_L = Velocidade de pouso

Esses dois valores podem ser definidos da seguinte forma:

$$V_{50} = 1,3 V_s$$

 $V_L = 1,15 V_s$

Onde Vs, é a velocidade de estol. O valor adotado aqui será a velocidade que foi determinada nos requisitos de projeto, 45 knot ou 23,15 m/s, já que a velocidade de estol encontra nos cálculos de desempenho acima foi menor que essa.

10.10.1 Cálculo da Distância de Planeio

Para este cálculo, considera-se que a aeronave realiza o planeio com velocidade constante deste o obstáculo de 15m, com um ângulo de inclinação de 10°

A distância percorrida na horizontal durante o planeio, pode então ser calculada da seguinte forma:

$$d_{gl} = \frac{H}{\tan \gamma}$$

onde:

H = 15m $\gamma = 10^{\circ}$ portanto:

 $d_{gl} = 88, 3m$

10.10.2 Calculo da Distância de Desaceleração em Vôo

Neste caso será considerado a aeronave pousando com o peso máximo de decolagem, que é o caso crítico, onde uma maior distância de pouso será percorrida. Determina então as velocidades de aproximação e de pouso.

$$V_s = 23,15 \text{ m/s}$$

 $V_{50} = 1,3 V_s = 30,1 \text{ m/s}$
 $V_L = 1,15 V_s = 26,62 \text{ m/s}$

A distância percorrida pode então ser determinada da seguinte forma:

$$d_{desac} = \frac{V_{50}^2}{2.a} - \frac{V_l^2}{2.a}$$

onde o fator "a", representa a desaceleração da aeronave, e pode ser definida da seguinte forma:

 $d_{desac} = 66,92 \text{ m}$

10.10.3 Cálculo da Distância de Desaceleração no Solo

$$d_g = \frac{V_l^2}{2.\mu g}$$

onde :

 μ = coeficiente médio de desaceleração no solo = 0,3

g = aceleração da gravidade = 9,81 m/s

portanto:

$$d_g = 120,41 \text{ m}$$

10.10.4 Cálculo da Distância de Desaceleração Total

Portanto a distância total de pouso, será dada por:

$$d_p = d_{gl} + d_{desac} + d_g$$

 $d_p = 88,3 + 66,92 + 120,41$
 $d_p = 275,63 \text{ m}$

10.11 Resultados Gerais

• Vel. máxima com 100% de pot. para vôo de cruzeiro ao nível do mar – 64 m/s

- Vel. máxima com 75% de pot. para vôo de cruzeiro ao nível do mar 60,5 m/s
- Vel. de estol com 100% de pot. para vôo de cruzeiro ao nível do mar 16,6 m/s
- Vel. de estol com 75% de pot. para vôo de cruzeiro ao nível do mar 20 m/s
- Máxima razão de subida com 100% de pot. no cruzeiro 5,01 m/s
- Máxima razão de subida com 75% de pot. no cruzeiro 2,61 m/s
- Velocidade de máxima de razão de subida com 100% de pot. no cruzeiro 45 m/s
- Velocidade de máxima de razão de subida com 75% de pot. no cruzeiro 35 m/s
- Máximo ângulo de subida com 100% de pot. no cruzeiro 7,97°
- Máximo ângulo de subida com 75% de pot. no cruzeiro 4,39°
- Velocidade de máximo ângulo de subida com 100% de pot. no cruzeiro 30 m/s
- Velocidade de máximo ângulo de subida com 75% de pot. no cruzeiro 30 m/s
- Autonomia máxima com 100% de pot. para cruzeiro 7,37 h
 - Velocidade correspondente 35 m/s
- Autonomia máxima com 75% de pot. para cruzeiro 17,83 h
 - Velocidade correspondente 30 m/s
- Alcance máximo com 100% de pot. para cruzeiro 1376 km
 - Velocidade correspondente 45 m/s
- Alcance máximo com 75% de Pmáx para cruzeiro 2774 km
 - Velocidade correspondente 35 m/s

10.12 Conclusão

Com os cálculos de acima apresentados fica claro que a aeronave BRATI-01 apresenta um desempenho melhor do que o esperado.

Sua velocidade de estol está abaixo de 45 knot, sua velocidade máxima nivelada se encontra entre 200 e 300 km/h. Além disso, seu alcance máximo fica bem acima de 800 km e sua autonomia acima de 3 h.

11 ESTABILIDADE

11.1 Controle Direcional Estático

Para avaliação da estabilidade direcional da aeronave BRATI-01 serão determinadas as características relacionadas abaixo:

- Margem de estabilidade direcional
- Deflexões do leme em função das velocidades de avanço e glissagem da aeronave
- Força nos pedais para vôo glissado
- Velocidade do vento para glissagem máxima

11.1.1 Determinação da faixa de velocidades para cálculo

Para os cálculos será adotada a seguinte faixa de velocidades:

72 km/h < V < 252 km/h = 20 m/s < V < 70 m/s

11.1.2 Cálculo da variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque da mesma

Basicamente, são duas as características da aeronave que causam a variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque da mesma: os efeitos tridimensionais da empenagem e o efeito da fresta entre a deriva e o leme.

Tratando-se a empenagem como uma asa, serão primeiramente verificados os efeitos tridimensionais da mesma.

$$a_{1} = \frac{2.\pi A_{EV}}{2 + \sqrt{\frac{A_{EV}^{2}}{k^{2}} \cdot (\beta^{2} + tg^{2}\lambda_{C/2}) + 4}}$$

Onde o parâmetro "k" é

$$k = \frac{(a_1)_0}{2 \cdot \pi}$$

No presente projeto é adotado o perfil NACA 0009 em toda a empenagem vertical, portanto:

$$(a_1)_0 = \left| \frac{dC_L}{d\alpha} \right|_{perfil} = 6,525 \ rd^{-1}$$

Assim o parâmetro "k" da empenagem horizontal será:

k = 1,038

O parâmetro "ß", definido de acordo com a equação abaixo, será avaliado em diferentes velocidades e seus valores serão apresentados na Tabela 11.1.

$$\beta^2 = \sqrt{1 - M^2}$$

Tabela 11.1 - Parâmetro "β"

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
β ²	0,9983	0,9978	0,9973	0,9961	0,9947	0,9931	0,9891	0,9843	0,9816	0,9786

Uma vez obtidos os valores de ß, pode-se avaliar a variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque da mesma.

Tabela 11.2 - Parâmetro "a₁*"

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
a ₁ *[rd^-1]	2,2469	2,247	2,2471	2,2474	2,2477	2,2481	2,2491	2,2502	2,2509	2,2516

Para efetuar-se a correção do valor de " a_1 " devido à fresta existente entre a deriva e o leme, utilizar-se-á os gráficos 4.11 a e b (Pullin et al, 1976).

Tendo sido o perfil NACA 0009, obtém-se geometricamente (vide Fig.1) a posição e o tamanho da folga em função da corda:

X = 0,73.C e $C_{gap} = 0,002.C$

Figura 11.1 - Posição da fenda na empenagem vertical

Para perfis bidimensionais:

C_{gap}	a ₁ /a ₁ *
0,001	0,980
0,005	0,950
0,002	0,973

Para perfis com $A_{EV} = 3$:

C_{gap}	a ₁ /a ₁ *
0,001	0,990
0,005	0,975
0,002	0,986

Interpolando-se com o inverso do alongamento para o alongamento da empenagem horizontal ($A_{EV} = 1,623$), tem-se:

1 / A	a ₁ / a ₁ *
0,000	0,973
0,333	0,986
0,616	0,998

Dessa forma, os valores apresentados na Tabela 11.2 deverão ser corrigidos por um fator de 0,977:

Tabela 11.3 - Parâmetro "a₁" – Variação do coeficiente de sustentação da empenagem vertical com a variação do ângulo de ataque e corrigida pelo efeito da fresta entre a deriva e o leme

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
a ₁ [rd^-1]	2,2422	2,2423	2,2424	2,2427	2,2431	2,2434	2,2444	2,2455	2,2462	2,2469

11.1.3 Cálculo da variação do coeficiente de sustentação da empenagem vertical com a variação da deflexão do leme

Sendo a espessura relativa dos perfis da empenagem vertical igual a 9% e a corda do leme igual a 26% da corda empenagem, tem-se do gráfico 4.12 a (Pullin et al, 1976) o valor da variação do coeficiente de sustentação da empenagem com a variação da deflexão do leme para um perfil bidimensional:

$$(a_2)_{0t} = 4,25 \ rd^{-1}$$

Da polar de arrasto do perfil NACA 0009 tem-se:

$$(a_1)_0 = 6,525 \ rd^{-1}$$

São apresentados na Tabela 11.4 os números de Reynolds da empenagem vertical em função da velocidade:

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
Re _{EV} [10^6]	1,45	1,63	1,81	2,18	2,54	2,90	3,63	4,36	4,72	5,08

Tabela 11.4 - Número de Reynolds da Empenagem Vertical

Figura 11.2 - Ângulo no bordo de fuga " τ " tomado à partir de 90% da corda

Observado o ângulo " τ " no bordo de fuga igual a 6,9° (vide Fig.2) e a partir do gráfico 4.1c (Pullin et al, 1976) tem-se:

τ [°]	$(a_1)_{0t}$
0,0	6,715
20,0	6,740

Logo:

$$\frac{(a_1)_0}{(a_1)_{0t}} = 0,9704$$

Observada proporção do comprimento da corda do leme (vide Fig.3) e a partir do gráfico 4.12 a (Pullin et al, 1976), tem-se:

Figura 11.3 - Proporção $C_{\rm f}\,/\,C$

$\frac{\left(a_{1}\right)_{0}}{\left(a_{1}\right)_{0t}}$	$\frac{(a_2)_0}{(a_2)_{0t}}$
0,9600	0,940
0,9800	0,970
0,9704	0,956

Dessa forma,

$$(a_2)_0 = 4,063 \ rd^{-1}$$

Adotando o valor médio como resultado para equação abaixo tem-se:

$$A \cdot \sqrt{(1 - M^2)} = 1,61$$

Levando-se esse valor médio ao gráfico 4.12 b (Pullin et al, 1976), tem-se:

$A \cdot \sqrt{(1 - M^2)}$	$\frac{\frac{(a_2)_M}{(a_2)_0}}{\frac{(a_1)}{(a_1)_0}}$
1,5000	1,177
2,0000	1,158
1,6100	1,173

Portanto, pode-se expressar o parâmetro " $(a_2)_M$ " em função da velocidade:

Tabela 11.5 - Parâmetro " $(a_2)_M$ " – Coeficiente de sustentação da empenagem vertical com a deflexão

do leme corrigidos pelo efeito da fresta entre o leme e a deriva.

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
$\left(a_{2}\right)_{M}$ [rd ⁻¹]	1,6375	1,6376	1,6376	1,6378	1,6381	1,6384	1,6391	1,6399	1,6404	1,6409

Deve-se também calcular a correção do coeficiente de sustentação da empenagem devido aos efeitos de balanceamento do leme. Entende-se por porcentagem de balanceamento a razão entre a área em planta do leme à frente da articulação e a área em planta do mesmo atrás da articulação.

Para o presente projeto tem-se:

$$\frac{r}{C} = 0,015$$
 e $\frac{C_f}{C} = 0,25$

Portanto,

% Balanceamento = $\frac{r}{C_f} = 0.06$

Do gráfico 4.11 c (Pullin et al, 1976), para o bordo de ataque do leme redondo, tem-se:

f = 0.85

Dessa forma a variação do coeficiente de sustentação da empenagem vertical com a deflexão do leme, corrigida pelos efeitos da geometria do leme, será:

Tabela 11.6 - Parâmetro "a₂" – Variação do coeficiente de sustentação da empenagem vertical com a deflexão do leme corrigida pelos efeitos da geometria do leme

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
$a_2 [rd^{-1}]$	1,3919	1,3919	1,392	1,3922	1,3924	1,3926	1,3932	1,3939	1,3943	1,3948

11.1.4 Cálculo da variação do coeficiente de momento na articulação do leme com a variação do ângulo de ataque da empenagem

Do gráfico 4.14 a (Pullin et al, 1976), sendo a razão entre a corda do leme e a corda da deriva igual a 25% e a espessura relativa dos perfis da empenagem vertical igual a 9%, tem-se:

$$(b_1)_{OT}^* = -0,49 \ rd^{-1}$$

e do sub-item 1.3 tem-se:

$$\frac{(a_1)_0}{(a_1)_{0t}} = 0,9704$$

Dessa forma, pelo gráfico 4.14 b (Pullin et al, 1976), tem-se:

$\frac{(a_1)_0}{(a_1)_{0t}}$	$\frac{\left(b_{1}\right)_{O}^{*}}{\left(b_{1}\right)_{OT}^{*}}$
0,9600	0,915
0,9800	0,960
0,9704	0,938

Logo,

$$(b_1)_0^* = -0,459 \ rd^{-1}$$

O valor de " $(b_1)_0$ " por sua vez é dado pela equação abaixo (Pullin et al, 1976)

$$(b_1)_o = (b_1)_o^* + 2 \cdot [(a_1)_{ot} - (a_1)_o] \cdot \left(\tan\frac{\tau}{2} - \frac{t}{c}\right)$$

Assim,

$$(b_1)_o = -0,4714$$

Deve-se também corrigir tal valor de acordo com a razão de balanceamento do leme. Essa razão é definida de acordo com a equação 5 (veja Fig.4):

$$BR = \sqrt{\left(\frac{c_B}{c_F}\right)^2 - \left(\frac{t/2}{c_F}\right)^2}$$

Figura 11.4 - Balanceamento do Leme

Para o presente projeto tem-se $C_b = 0,146$, $C_f = 0,25$ e t/2 = 0,146 . Sendo assim: BR = 0

Tendo encontrado tal valor de razão de balanceamento torna-se desnecessário efetuar a correção.

Pode-se determinar o coeficiente de momento na articulação para o caso de um finito (tridimensional). A relação entre o coeficiente de momento na articulação bidimensional e o tridimensional é dado pela equação abaixo:

$$b_1 = (b_1)_0 \cdot (1 - F_1) + F_2 \cdot F_3 \cdot (a_1)_0$$

Sendo que os valores F_1 , F_2 e F_3 são obtidos da Figura 4.14c (Pullin et al, 1976) em função do parâmetro A_{EV} . 5,73 / $a_{1(0)}$, que para o presente projeto vale 1,4252 e o balanço do leme C_b / C_f igual a 0,584. obtém-se portanto:

$$F_1 = 0,52$$

 $F_2 = 0,018$
 $F_2 = 1,0$

Então:

$$b_1 = -0,1088$$

Pode-se ainda corrigir o valor desta variação devido aos efeitos de *horn* da empenagem vertical. O valor corrigido será o coeficiente (b₁) sem a variação devido aos efeitos de *horn* acrescido deste efeito representado por $\Delta b_1 / A_H \cdot B$

Do gráfico 4.14 a (Pullin et al, 1976), utilizando-se a curva "*Shielded horn*", no modelo "*any nose*", tem-se:

 $C'_{1} / C = 0.85$ e $\Delta b_{1} / A_{H} \cdot B = 2.01$

Calculando-se o valor de B através da equação abaixo relacionada.

$$B = \frac{S_H \cdot \overline{C_H}}{S_n \cdot C_n} = \frac{0,027 \cdot 0,162}{0,3109 \cdot 0,225} = 0,06253$$

Sendo S_H a área do *horn* ; C_H a corda média do *horn*; S_η a área do leme atrás da articulação; A_H o alongamento do *horn* e C_η a corda média do leme atrás da articulação. Dessa maneira a variação do coeficiente de momento na articulação do leme com a variação do ângulo de ataque da empenagem vertical corrigido devido aos efeitos de *horn* será:

$$b_1 = b_{1s} + (\Delta b_1 / A_H \cdot B) \cdot A_H \cdot B = -0,1088 + (2,01 \cdot 0,9684 \cdot 0,06253) = 0,0129$$

11.1.5 Cálculo da variação do coeficiente de momento na articulação do leme com a variação do de deflexão do leme

Do gráfico 4.15 a (Pullin et al, 1976), sendo a razão entre a corda do leme e a corda da deriva igual 25% e a espessura relativa dos perfis da empenagem igual a 9%, tem-se:

$$(b_2)_{OT}^* = -0,865 \ rd^{-1}$$

Conforme calculado no sub-item 1.3, tem-se:

$$\frac{(a_2)_0}{(a_2)_{0t}} = 0,956$$

$\frac{(a_2)_0}{(a_2)_{0t}}$	$\frac{\left(b_2\right)_O^*}{\left(b_2\right)_{OT}^*}$
0,9500	0,960
1,0000	1,000
0,9560	0,965

dessa forma, pelo gráfico 4.15 b (Pullin et al, 1976), tem-se:

Logo,

$$(b_2)_0^* = -0,8347 \ rd^{-1}$$

O valor de " $(b_2)_0$ " é dado pela equação abaixo (Pullin et al, 1976):

$$(b_2)_o = (b_2)_o^* + 2 \cdot [(a_2)_{ot} - (a_2)_o] \cdot \left(\tan\frac{\tau}{2} - \frac{t}{c}\right)$$

ter-se-á então:

$$(b_2)_o = -0.8458$$

A razão de balanceamento (BR) também será nula neste parâmetro.

Deve-se efetuar a correção de tal coeficiente devido aos efeitos tridimensionais. Semelhantemente ao coeficiente anterior tem-se:

$$b_2 = (b_2)_o - \left(\frac{\alpha_i}{\delta}\right) \cdot (b_1)_0 + \Delta(b_2) \cdot F_3 \cdot (a_2)_0$$

Sendo que os valores de $\left(\frac{\alpha_i}{\delta}\right)$; $\Delta(b_2)$; F_3 são obtidos pelo gráfico 4.14 c (Pullin et al, 1976), em função do parâmetro A_{EV} . 5,73 / $a_{1(0)}$, o qual no presente projeto, vale 1,4252 e do balanço do leme C_b / C_f igual a 0,584 obtém-se portanto:

$$\left(\frac{\alpha_i}{\delta}\right) \cdot \frac{(a_1)_0}{(a_2)_0} = 0.418$$

Dos sub-itens 1.2 e 1.3 deste capítulo tem-se que $(a_1)_0 = 6,525 \ rd^{-1}$ e $(a_2)_0 = 4,063 \ rd^{-1}$; dessa forma:

$$\left(\frac{\alpha_i}{\delta}\right) = 0,26028 \ rd^{-1}$$

Do gráfico 4.14 c (Pullin et al, 1976), tira-se também:

$$\Delta(b_2) = 0.037$$
 e $F_3 = 1.0$

sendo assim,

$$b_2 = -0,8458 - (0,26028 \cdot (-0,4714)) + 0,037 \cdot 1,0 \cdot 4,063$$
$$b_2 = -0,5728 \ rd^{-1}$$

Pode-se ainda corrigir o valor desta variação devido aos efeitos de *horn* da empenagem vertical. O valor corrigido será o coeficiente (b₂) sem a variação devido aos efeitos *horn* acrescido deste efeito representado por $\Delta b_2 / A_H \cdot B$.

Do gráfico 4.14 a (Pullin et al, 1976), Pullin et al, 1976), utilizando-se a curva "*Shielded horn*", no modelo "*blunt*", tem-se:

$$\Delta b_2 / A_H \cdot B = 2,55$$

Uma vez determinado "B" pela equação 7, tem-se:

$$b_2 = b_{2s} + (\Delta b_2 / A_H \cdot B) \cdot A_H \cdot B = -0,5728 + (2,55 \cdot 0,9684 \cdot 0,06253) = -0,4184$$

11.1.6 Cálculo da variação do momento de guinada da aeronave com a variação do ângulo de guinada da mesma

A contribuição da fuselagem para a variação do coeficiente de momento de guinada da aeronave com a variação do seu ângulo de guinada é dada pela equação abaixo:

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_B = -k_\beta \cdot \frac{S_{BS} \cdot l_B}{S \cdot b} \cdot \sqrt{\frac{h_{B1}}{h_{B2}}} \cdot \sqrt[3]{\frac{b_{B2}}{b_{B1}}}$$

Onde a constante " k_{β} " é determinada pela equação descrita abaixo:

$$k_{\beta} = 0.30 \cdot \frac{l_{CG}}{l_{B}} + 0.75 \cdot \frac{h_{B_{máx}}}{l_{B}} - 0.105$$

E as demais variáveis apresentadas na Figura 11.5:

Figura 11.5 - Variáveis para cálculo da contribuição da fuselagem para a variação do coeficiente de momento de guinada da aeronave com a variação do seu ângulo de guinada.
Para o presente projeto tem-se:

$$k_{\beta} = 0,30 \cdot \frac{1,963}{7,360} + 0,75 \cdot \frac{1,096}{7,360} - 0,105 = 0,0867$$

e ainda,

$$\left[\frac{\partial C_n}{\partial \beta}\right]_B = -0,0867 \cdot \frac{4,174 \cdot 7,36}{12,96 \cdot 10,5} \cdot \sqrt{\frac{0,834}{0,431}} \cdot \sqrt[3]{\frac{0,292}{1,041}} = -0,0178$$

A contribuição da hélice para a variação do coeficiente de momento de guinada da aeronave com a variação de seu ângulo de guinada é dada pela equação abaixo:

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{HEL} = -0.053 \cdot N_P \cdot \frac{l_P \cdot D_P^2}{S \cdot b}$$

Sendo N_p o número de pás da hélice, l_p a distância do disco da hélice ao centro de gravidade da aeronave e D_p o diâmetro da hélice. Portanto ter-se-á:

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_{0}\right]_{HEL} = -0,053 \cdot 2 \cdot \frac{1,795 \cdot 1,8^2}{12,96 \cdot 10,5} = -0,0045$$

A contribuição de uma asa baixa com diedro de 3,5° não pode ser desprezada e a mesma será calculada de acordo com a equação 14 (Utsch, 1995). É importante observar que em se tratando de uma asa trapezoidal a corda ('C') será uma função da semienvergadura ('b/2') e também que o coeficiente de arrasto induzido (' C_{1h} ')será uma função do ângulo de ataque local (' α_h° '), que por sua vez será uma função da semienvergadura.

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{ASA} = \frac{2 \cdot COS(\Lambda)}{S \cdot b} \int_0^{S \cdot SEC\Lambda} \sum_{b=0}^{S \cdot SEC\Lambda} \sum_$$

Onde: s = b/2 = 5,25 m (semi-envergadura).

 $\Lambda = -0.7$ ° ~ 0 ° (o enflechamento da asa pode ser desprezado)

 $\alpha_h^{\circ} \sim \hat{a}$ ngulo de ataque local

 $\Gamma = 3,5^{\circ} = 6,11 \cdot 10^{-2} \text{ rd} \text{ (diedro da asa)}$

 $C_h = [-0,111047 \text{ h} + 1,527]$ (equação da corda ao longo da semi-envergadura)

 C_{1h} ~ coeficiente de arrasto induzido, calculado na seção 2.3 do relatório de cálculos aerodinâmicos e apresentados na Tabela 7 como função do ângulo de ataque e da velocidade para vôo nivelado (vide Fig.6).

Figura 11.6 - Coeficiente de arrasto induzido como função do ângulo de ataque

Tabela 11.7 - Coeficiente de arrasto induzido em função do ângulo de ataque para vôo reto nivelado

V								
[m/s]	25	30	35	40	50	60	65	70
α [°]	12,0	8,0	6,0	4,0	2,0	0,0	-0,25	-0,5
C ₁	0,136348	0,072636	0,048244	0,028828	0,014388	0,004924	0,00413	0,003336

Logo a equação acima pode ser reduzida para a forma:

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{ASA} = \frac{2 \cdot \Gamma}{S \cdot b} \int_0^{b/2} C_{1h} \cdot C_h \cdot h \cdot dh$$

avaliando-se para diferentes ângulos de ataque obtém-se a Tabela 11.8.

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{ASA} = \frac{2 \cdot 6.11 \cdot 10^{-2}}{12.96 \cdot 10.5} \int_0^{5.25} C_{1h} \cdot (-0.11105 \cdot h + 1.527) \cdot h \cdot dh$$

 Tabela 11.8 - Avaliação da contribuição das asas para a estabilidade direcional em função do ângulo de ataque para vôo reto nivelado (diferentes ângulos de ataque)

V [m/s]	25	30	35	40	50	60	65	70
$\left[\frac{\partial C_n}{\partial \beta}\Big _0\right]_{ASA}$	1,9E-03	1,0E-03	6,8E-04	4,1E-04	2,0E-04	6,9E-05	5,8E-05	4,7E-05

O valor médio do parâmetro $\frac{\partial C_n}{\partial \beta}\Big|_0$ apresentado na Tabela 11.7 é de 0,0005. Pode-se

concluir a partir daí que a contribuição da asa para a estabilidade direcional é desprezível quando comparada às contribuições da hélice e da fuselagem previamente calculadas.

A equação abaixo apresenta um somatório das contribuições dos componentes mencionados no parágrafo anterior. Portanto a variação do coeficiente de momento de guinada com a variação do seu ângulo de guinada, considerando-a sem empenagem vertical e adotando o valor médio da contribuição da asa será:

$$\left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{S/EV} = \left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_B + \left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{HEL} + \left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{ASA} = -0,0218$$

11.1.7 Cálculo das Características de Estabilidade Controle Direcionais

Na avaliação na margem de estabilidade direcional são estudadas duas condições:

- 1. Pedal fixo: onde os comandos permanecem fixos
- Pedal livre: onde os comandos estão livres, ou ainda, o momento na articulação da superfície de comando é constante.

Alguns dos parâmetros necessários aos cálculos são apresentados na Figura 7:

Figura 11.7 - Parâmetros para cálculo da contribuição da empenagem vertical na estabilidade direcional

11.1.8 Margem de estabilidade direcional pedal fixo

A contribuição da empenagem vertical para a estabilidade direcional na condição de pedais fixos é calculada pela equação baixo apresentada:

$$M_{DIR} = \left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{S/EV} + \overline{V} \cdot a_1$$

Sendo que o volume de cauda da empenagem vertical da presente aeronave será:

$$\overline{V} = \frac{S_{EV} \cdot X_{EV}}{S \cdot b} = \frac{1,03 \cdot 4,867}{12,96 \cdot 10,5} = 0,0368$$

Dessa maneira, a margem de estabilidade direcional com os comandos fixos é dada pela Tabela 11.9.

Tabela 11.9 - Parâmetro	M_{DIR}	- Margem de estabilidade direcional pedais fixos
	DIK	

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
^M DIR	0,0607	0,0607	0,0607	0,0607	0,0607	0,0608	0,0608	0,0608	0,0609	0,0609

11.1.9 Margem de estabilidade direcional pedal livre

A contribuição da empenagem vertical para a estabilidade direcional na condição de pedais livres é calculada pela equação abaixo:

$$M'_{DIR} = \left[\frac{\partial C_n}{\partial \beta}\Big|_0\right]_{S/EV} + \overline{V} \cdot \overline{a}_1$$

Sendo:

$$\overline{a_1} = a_1 - \frac{a_2}{b_2} \cdot b_1$$

Dessa maneira, a margem de estabilidade direcional com os comandos livres é dada pela Tabela 11.10:

Tabela 11.10 - Parâmetro M'_{DIR} - Margem de estabilidade direcional pedais livres

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
$\overline{a_1}$	2,285	2,2851	2,2853	2,2856	2,2859	2,2863	2,2872	2,2884	2,2891	2,2898
^{M'} DIR	0,0623	0,0623	0,0623	0,0623	0,0623	0,0623	0,0624	0,0624	0,0624	0,0625

11.1.10 Ângulo de flutuação do leme

O ângulo de flutuação do leme é definido como o ângulo que o leme tomará em uma guinada se os comandos forem deixados livres. Tal valor é dado pela equação abaixo:

$$\delta_{f} = -\frac{b_{1}}{b_{2}} \cdot \beta$$

para o presente projeto ter-se-á:

$$\delta_{f}=0,\!0308\cdot\beta$$

11.1.11 Força no pedal para manter vôo glissado

A força no pedal para se manter o vôo glissado é dada pela equação abaixo:

$$Pe = m_e \cdot \frac{1}{2} \cdot \rho \cdot V^2 \cdot S_L \cdot c_L \left[b_1 - \frac{\partial C_n}{\partial \beta} \cdot \frac{b_2}{\overline{V} \cdot a_2} \right] \cdot \beta$$

Sendo: m_e a razão de engrasamento entre os pedais e o leme;

 S_L a área do leme;

 c_L a corda média do leme.

Para o presente projeto tem-se:

$$m_e = 6.0 \text{ rd/m}$$
 $S_L = 0.358 \text{ m}^2$ $c_L = 0.226 \text{ m}$

Dessa maneira, a Tabela 11.11 e a Figura 11.8 apresentam os valores de força no pedal para diversos casos de vôo glissado.

V [m/s]	20	22,5	25	30	35	40	50	60	65	70
$\operatorname{Pe}(\beta = 1^{\circ})$	0,1077	0,1363	0,1683	0,2424	0,3299	0,431	0,6735	0,97	1,1385	1,3206
$\operatorname{Pe}(\beta = 5^{\circ})$	0,5386	0,6817	0,8416	1,212	1,6497	2,1549	3,3675	4,85	5,6926	6,6029
$Pe(\beta = 10^{\circ})$	1,0772	1,3634	1,6832	2,424	3,2995	4,3097	6,735	9,7001	11,385	13,206
$\operatorname{Pe}(\beta = 15^{\circ})$	1,6158	2,0451	2,5248	3,6359	4,9492	6,4646	10,102	14,55	17,078	19,809
$Pe(\beta = 20^{\circ})$	2,1545	2,7268	3,3665	4,8479	6,5989	8,6195	13,47	19,4	22,771	26,411
$Pe(\beta = 25^{\circ})$	2,6931	3,4085	4,2081	6,0599	8,2486	10,774	16,837	24,25	28,463	33,014
$Pe(\beta = 40^{\circ})$	4,3089	5,4536	6,7329	9,6958	13,198	17,239	26,94	38,8	45,541	52,823

Tabela 11.11 - Força no Pedal [kgf] para diferentes ângulos de derrapagem

Figura 11.8 - Força no pedal vôo glissado

11.2 Controle Longitudinal Estático

O cálculo da estabilidade longitudinal visa verificar o equilíbrio e a estabilidade da aeronave BRATI-01 para um passeio do centro de gravidade estimado. Os dados obtidos nos cálculos aerodinâmicos e de desempenho serão utilizados nestes cálculos. Serão determinadas com esses cálculos as seguintes características da aeronave:

- Ponto Neutro Manche Fixo
- Ponto Neutro Manche Livre
- Ponto de Manobra Manche Fixo
- Ponto de Manobra Manche Livre
- Margens Estáticas de Estabilidade
- Margens de Manobra
- Deflexão do Profundor para Vôo Equilibrado com Fator de Carga igual a 1
- Deflexão do Profundor para Vôo Equilibrado com Fator de Carga máximo
- Força no Manche para vôo Equilibrado
- Variação da deflexão do manche por "g" para realizar manobra

11.2.1 Parte I - Definições Geométricas

11.2.1.1 Características Geométricas da Asa

A asa foi dividida da seguinte maneira:

Figura 11.9 – Definição geométrica da asa

Para calcular a estabilidade e controle longitudinal, será feita a estimativa dos Coeficientes Aerodinâmicos.

11.2.1.1.1 Corda Geométrica

$$\bar{c} = \frac{S}{h}$$

$$\bar{c} = 1,234m$$

onde:

 \bar{c} = corda geométrica S = area alar b = envergadura

11.2.1.1.2 Corda Média Aerodinâmica

$$\stackrel{=}{c} = \frac{2}{3} \cdot c_r \cdot \left(\frac{1 + \lambda + \lambda^2}{\lambda + 1}\right)$$

onde:

 \overline{c} = corda média aerodinâmica

 λ = afilamento da asa

 $c_r = corda$ na raiz

O valor da corda média aerodinâmica é:

$$\vec{c} = 1,257m$$

> Posição da Corda Média Aerodinâmica:

$$(c_r - c_p) \rightarrow \frac{b}{2}$$

 $(c_r - \overline{c}) \rightarrow y_{\overline{c}}$

$$(1,527 - 0,994) \rightarrow 5,25$$

 $(1,527 - 1,257) \rightarrow y_{\overline{c}}$
∴ $y_{\overline{c}} = 2,660 \text{ m}$

11.2.1.2 Número de Reynolds:

O número de Reynolds é calculado conforma a equação abaixo.

$$\operatorname{Re} = \frac{\rho . V . c}{\mu}$$

Adotando atmosfera ISA + 15, ρ igual a densidade do ar (1,225 kg/m³), μ igual a viscosidade do ar (17.894x10⁻⁶ kg/m.s), V a velocidade da aeronave em metros por segundo e \bar{c} igual a corda média aerodinâmica da seção da asa.

Em cada seção da asa, para a faixa de velocidades estudadas apresenta-se a tabela 1, contendo os respectivos números de Reynolds.

Tabela 1.12 – Número de Reynolds da as
--

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	85	90
Re1 x 10^6	2,0668	2,3768	3,1002	3,6168	4,1335	4,6502	5,1669	5,6836	6,2003	6,8203	7,2337	7,7504	8,2671	8,7838	9,3005
Re2 x 10^6	1,8604	2,1395	2,7907	3,2558	3,7209	4,1860	4,6511	5,1162	5,5813	6,1394	6,5115	6,9766	7,4417	7,9068	8,3720
Re3 x 10^6	1,6542	1,9024	2,4814	2,8949	3,3085	3,7220	4,1356	4,5491	4,9627	5,4590	5,7898	6,2034	6,6169	7,0305	7,4441
Re4 x 10^6	1,4479	1,6651	2,1719	2,5338	2,8958	3,2578	3,6198	3,9817	4,3437	4,7781	5,0677	5,4296	5,7916	6,1536	6,5156

11.2.1.3 Divisão da Asa para efeito de cálculos

Aqui foi adotada a mesma divisão da asa feita em aerodinâmicas para melhorar a precisão dos cálculos realizados.

Figura 11.10 - Divisão da asa para efeito dos cálculos aerodinâmicos

11.2.1.4 Características Geométricas da Empenagem Horizontal

Dos cálculos prévios de estabilidade e controle e do desenho de três vistas, tem-se a geometria da empenagem horizontal definida conforme a Figura 11.11.

Figura 11.11 – Definição Geométrica da empenagem horizontal

11.2.1.4.1 Corda Geométrica:

$$\bar{c} = \frac{S}{b}$$

$$\bar{c} = 0,573m$$

onde: $\bar{c} = \operatorname{corda} \operatorname{geométrica}$

S =área da empenagem horizontal

b = envergadura da empenagem horizontal

11.2.1.4.2 Corda Média Aerodinâmica:

$$\stackrel{=}{c} = \frac{2}{3} \cdot c_r \cdot \left(\frac{1 + \lambda + \lambda^2}{\lambda + 1}\right)$$

onde: c = corda média aerodinâmica

 λ = afilamento da asa

 $c_r = corda na raiz$

O valor da corda média aerodinâmica é:

$$c = 0,782m$$

11.2.1.4.3 Enflechamento:

$$\Lambda_{c/2}^{EH} = -1.6279^{\circ}$$

11.2.1.5 Características Geométricas da Empenagem Vertical

Dos cálculos prévios de estabilidade e controle e do desenho de três vistas, tem-se a geometria da empenagem vertical definida conforme a Figura 11.12.

Figura 11.12 – Definição Geométrica da empenagem vertical

11.2.1.5.1 Corda Geométrica:

$$\bar{c} = \frac{S}{b}$$
$$\bar{c} = 1,234 m$$

onde: $\bar{c} = \operatorname{corda} \operatorname{geométrica}$

S =área da empenagem horizontal

b = envergadura da empenagem horizontal

11.2.1.5.2 Corda Média Aerodinâmica:

$$\stackrel{=}{c} = \frac{2}{3} \cdot c_r \cdot \left(\frac{1 + \lambda + \lambda^2}{\lambda + 1}\right)$$

onde: c = corda média aerodinâmica

 λ = afilamento da asa

 $c_r = corda$ na raiz

O valor da corda média aerodinâmica é:

$$c = 1,234 m$$

11.2.2 Corpo Equivalente de Revolução (CER)

O corpo equivalente de revolução é definido como um corpo de revolução com o mesmo comprimento da fuselagem em estudo e com seções circulares de mesmo perímetro das seções da fuselagem em estudo.

Figura 11.13 – Divisão da Fuselagem em 43 Estações

A Figura 11.13 apresenta a vista lateral e vista em planta da fuselagem em estudo, que foi dividida em 43 estações. Nesse processo empregou-se uma ferramenta CAD.

- D = diâmetro máximo do CER = 1,115 m
- If = comprimento da fuselagem = 7,36 m
- la = posição do diâmetro máximo do CER = 2,40 m
- lc = comprimento da cauda = 4,96 m

Figura 11.14 – Área Molhada

 S_{MA} = área molhada da região A = 6,03 m² S_{MC} = área molhada da região C = 8,08 m²

11.2.3 Parte II – Características de Estabilidade

Esta parte do relatório apresenta os cálculos necessários para determinação dos Pontos Neutros Manche Fixo e Manche Livre, os Pontos de Manobra Manche Fixo e Manche Livre, as Margens Estáticas de Estabilidade, as Margens de Manobra, a deflexão do profundor para Vôo Equilibrado com Fator de Carga igual a 1, a deflexão do profundor para Vôo Equilibrado com Fator de Carga máximo, a Força no Manche para vôo Equilibrado e a variação da deflexão do manche por "g" para realizar manobra.

Todas as derivadas de estabilidade que serão apresentadas posteriormente foram determinadas na parte descritiva do Cálculo Aerodinâmico. Portanto tais procedimentos para obtenção destes valores serão omitidos nesta seção.

11.2.4 Cálculo dos Pontos Neutros

11.2.4.1 Cálculo do Ponto Neutro Manche Fixo (hn)

A hipótese Manche Fixo considera uma variação nula na deflexão do profundor ($\eta = 0$). Define-se como Ponto Neutro Manche Fixo a posição do C.G. para a qual a margem estática longitudinal Manche Fixo se anula.

O Ponto Neutro Manche Fixo é calculado por:

$$h_n = h_{owb} + \overline{V} \cdot a_1 \frac{\varepsilon_{\alpha}}{a_{wb}}$$

onde: howb - posição do centro aerodinâmico do conjunto asa - fuselagem

 \overline{V} - volume de cauda da aeronave

 a_1 – coeficiente $dC_L/d\alpha$ da empenagem horizontal. Variável para cada condição.

 ϵ_a – efeito de downwash. Variável para cada condição calculada.

 $a_{wb}-$ coeficiente $dC_L/d\alpha$ do conjunto asa-fuselagem

Sendo:

$$\overline{V} = \frac{S_t \cdot I_t}{S \cdot c}$$
$$\overline{V} = 0,6166$$

onde:

St - área da empenagem horizontal

It – distância entre os C.A.s da asa e da empenagem

S – área da asa

c - corda média aerodinâmica da asa

Os valores dos pontos neutros manche fixo devem ser calculados para as condições de

vôo reto nivelado, pouso de pista e pouso três pontos.

11.2.4.1.1 Vôo reto e nivelado

No vôo reto nivelado as grandezas variáveis assumem os seguintes valores:

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	4,9242	4,9252	4,9282	4,9309	4,9340	4,9375	4,9414	4,9458	4,9506	4,9569	4,9616	4,9677	4,9744	4,9892
a1 [rad-1]	3,3790	3,3796	3,3812	3,3826	3,3842	3,3861	3,3881	3,3905	3,3930	3,3964	3,3988	3,4021	3,4056	3,4134
hn	0.5775	0.5775	0.5774	0.5774	0.5774	0.5773	0.5773	0.5772	0.5772	0.5771	0.5770	0.5769	0.5768	0.5766

Tabela 11.13 - Ponto neutro manche fixo para vôo reto nivelado

11.2.4.1.2 Pouso de Pista

O ponto neutro manche fixo para pouso de pista será:

$$\mathbf{h}_{n} = \mathbf{h}_{0} + \overline{\mathbf{V}}\left(\frac{\left(\mathbf{a}_{1}\right)_{g}}{\left(\mathbf{a}\right)_{g}}\right) \cdot \left(1 - \left(\frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha}\right)_{g}\right)$$

onde:
$$\left(\frac{d\varepsilon}{d\alpha}\right)_{g} = 0,1363$$

Tabela 11.14 - Ponto neutro manche fixo para pouso de pista

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,6831	3,8865	3,8883	3,8900	3,8918	3,8940	3,8964	3,8990	3,9019	3,9058	3,9086	3,9124	3,9164	3,9254
hn	0,6061	0,5750	0,5750	0,5749	0,5749	0,5748	0,5748	0,5747	0,5747	0,5746	0,5745	0,5744	0,5744	0,5742

11.2.4.1.3 Pouso em três pontos

O ponto neutro manche fixo para pouso de pista será:

$$\mathbf{h}_{n} = \mathbf{h}_{0} + \overline{\mathbf{V}}\left(\frac{(\mathbf{a}_{1})_{g}}{(\mathbf{a})_{g}}\right) \cdot \left(1 - \left(\frac{d\varepsilon}{d\alpha}\right)_{g}\right)$$

onde:
$$\left(\frac{d\varepsilon}{d\alpha}\right)_g = 0,0851$$

Tabela 11.15 - Ponto neutro manche fixo para pouso três pontos

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,8858	3,8865	3,8883	3,8900	3,8918	3,8940	3,8964	3,8990	3,9019	3,9058	3,9086	3,9124	3,9164	3,9254
hn	0,6448	0,6448	0,6447	0,6447	0,6446	0,6446	0,6445	0,6444	0,6444	0,6443	0,6442	0,6441	0,6440	0,6437

11.2.4.1.4 Cálculo do Ponto Neutro Manche Livre (hn')

A hipótese Manche Livre considera uma variação nula no momento de articulação. Define-se como Ponto Neutro Manche Livre a posição do C.G. para a qual a margem estática longitudinal Manche Livre se anula.

O Ponto Neutro Manche Livre é calculado por:

$$h'_n = h_0 + \overline{V} \cdot \frac{\overline{a_1}}{a} \cdot \left(1 - \frac{d\varepsilon}{d\alpha}\right)$$

onde: howb - Posição do centro aerodinâmico do conjunto asa - fuselagem

 \overline{V} – Volume de cauda da aeronave

 $\overline{a_1}$ – coeficiente parametrizado a partir de a_1, a_2, b_1, b_2

 ϵ_{α} – efeito de downwash

 a_{wb} – coeficiente dC_L/da do conjunto asa-fuselagem

Sendo:

$$\overline{V} = \frac{S_t \cdot I_t}{S \cdot \overline{c}}$$
 e $\overline{a_1} = a_1 - \left(\frac{b_1}{b_2}\right) \cdot a_2$

onde: $S_t - Area da empenagem horizontal$

 I_t – Distância entre os C.A.s da asa e da empenagem

S – Área da asa

c – corda média aerodinâmica da asa

 a_1 – coeficiente $dC_L/d\alpha$ da empenagem horizontal

 a_2 – coeficiente dC_L/d η da empenagem horizontal

 b_1 – coeficiente $dC_H/d\alpha$ da empenagem horizontal

 b_2 – coeficiente dC_H/dη da empenagem horizontal

Os valores dos pontos neutros manche livre devem ser calculados para as condições de

vôo reto nivelado, pouso de pista e pouso três pontos.

11.2.4.1.5 Vôo reto e nivelado

No vôo reto nivelado temos:

r								r	1					
Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	4,9242	4,9252	4,9282	4,9309	4,9340	4,9375	4,9414	4,9458	4,9506	4,9569	4,9616	4,9677	4,9744	4,9892
a1 [rad-1]	3,3790	3,3796	3,3812	3,3826	3,3842	3,3861	3,3881	3,3905	3,3930	3,3964	3,3988	3,4021	3,4056	3,4134
a2 [rad-1]	2,0246	2,0349	2,0343	2,0394	2,0500	2,0999	2,1023	2,1075	2,1132	2,1219	2,1323	2,1572	2,1633	2,1709
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$\overline{a_1}$	2,6760	2,6730	2,6748	2,6744	2,6724	2,6569	2,6582	2,6587	2,6592	2,6596	2,6584	2,6530	2,6544	2,6596
h'n	0,5176	0,5173	0,5173	0,5172	0,5169	0,5154	0,5153	0,5151	0,5150	0,5147	0,5144	0,5137	0,5135	0,5133

Tabela 11.16 - Ponto neutro manche livre para vôo reto nivelado

11.2.4.1.6 Pouso de Pista

O ponto neutro manche livre para pouso de pista será:

$$\mathbf{h'}_{n} = \mathbf{h}_{0} + \overline{\mathbf{V}}\left(\frac{\left(\overline{a}_{1}\right)_{g}}{\left(\mathbf{a}\right)_{g}}\right) \cdot \left(1 - \left(\frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha}\right)_{g}\right)$$

sendo: $(\overline{a}_1)_g = (a_1)_g - \left(\frac{a_2}{b_2}\right) \cdot b_1$

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,6831	3,6837	3,6855	3,6870	3,6888	3,6908	3,6931	3,6956	3,6984	3,7020	3,7047	3,7083	3,7121	3,7206
a2 [rad-1]	2,0246	2,0349	2,0343	2,0394	2,0500	2,0999	2,1023	2,1075	2,1132	2,1219	2,1323	2,1572	2,1633	2,1709
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$(a_1)_g$	5,0090	5,0067	5,0104	5,0117	5,0116	4,9983	5,0020	5,0053	5,0089	5,0133	5,0150	5,0135	5,0192	5,0337
h'n	0,6061	0,6061	0,6061	0,6060	0,6060	0,6059	0,6059	0,6058	0,6057	0,6056	0,6056	0,6055	0,6054	0,6052

Tabela 11.17 - Ponto neutro manche livre para pouso de pista

11.2.4.1.7 Pouso em três pontos

Para pouso três pontos é utilizada a mesma expressão do cálculo de ponto neutro manche livre para pouso de pista:

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,8858	3,8865	3,8883	3,8900	3,8918	3,8940	3,8964	3,8990	3,9019	3,9058	3,9086	3,9124	3,9164	3,9254
a2 [rad-1]	2,0246	2,0349	2,0343	2,0394	2,0500	2,0999	2,1023	2,1075	2,1132	2,1219	2,1323	2,1572	2,1633	2,1709
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$(a_1)_g$	5,0090	5,0067	5,0104	5,0117	5,0116	4,9983	5,0020	5,0053	5,0089	5,0133	5,0150	5,0135	5,0192	5,0337
h'n	0,6448	0,6448	0,6447	0,6447	0,6446	0,6446	0,6445	0,6444	0,6444	0,6443	0,6442	0,6441	0,6440	0,6437

 Tabela 11.18 - Ponto neutro manche livre para pouso três pontos

11.2.5 Parâmetro de Densidade Longitudinal

O parâmetro de densidade longitudinal é definido por:

$$\mu = \frac{W}{g \cdot \rho \cdot l_z \cdot S}$$

onde: W – peso da aeronave

g - aceleração da gravidade

 l_x – distância entre o centro de gravidade da aeronave e o centro aerodinâmico da

empenagem horizontal (1/4 da corda média aerodinâmica)

S – área da asa

Serão calculados 4 parâmetros de densidade longitudinal com as opções de carregamento críticos da aeronave. Os casos de carregamento são:

- Piloto pesado com tanque cheio
- Piloto leve com tanque cheio
- Piloto pesado com tanque vazio
- Piloto leve com tanque vazio

As condições de tanque vazio são aplicadas apenas nas situações de pouso com interferência do efeito solo.

Os valores dos parâmetros de densidade longitudinal para cada caso estão apresentados na Tabela a seguir.

Carregamento	Peso [kgf]	Pos. C.G. [%cma]	l _z [m]	μ
Plt. pesado + comb.	756,3	0,2200	4,1429	11,499
Plt. Leve + comb.	678,3	0,2800	4,1371	10,327
Piloto pesado	641,3	0,2100	4,1589	9,713
Piloto leve	563,3	0,2700	4,1383	8,574

 Tabela 11.19 - Parâmetros de densidade longitudinal

11.2.6 Ponto de Manobra Manche Fixo (h_m)

O Ponto de Manobra Manche Fixo é a posição do C.G. para a qual não é necessária nenhuma alteração na deflexão do profundor para a realização de uma manobra.

O cálculo do Ponto de Manobra Manche Fixo é feito pela seguinte expressão:

$$h_m = h_0 + \overline{V} \cdot \frac{\overline{a_1}}{a} \cdot \left(1 - \frac{d\varepsilon}{d\alpha}\right) + \frac{\overline{Va_1}}{2 \cdot \mu}$$

onde: howb - Posição do centro aerodinâmico do conjunto asa - fuselagem

 \overline{V} – Volume de cauda da aeronave

 a_1 – Coeficiente dC_L/d α da empenagem horizontal

 ϵ_{α} – Efeito de Downwash

 $a_{wb}-Coeficiente \; dC_L/d\alpha \; do \; conjunto \; asa-fuselagem$

 μ – parâmetro de densidade longitudinal

Sendo:

$$\overline{V} = \frac{S_t \cdot I_t}{S \cdot c} \qquad e \qquad \mu = \frac{W}{g \cdot \rho \cdot I_t' \cdot S}$$

onde: S_t – Área da empenagem horizontal

- lt Distância entre os C.A.s da asa e da empenagem
- S Área da asa
- c corda média aerodinâmica da asa
- W Peso máximo da aeronave
- g-aceleração da gravidade
- ρ densidade do ar

lt' – Distância entre o centro de gravidade da aeronave e o centro aerodinâmico da empenagem horizontal

Os pontos de manobra manche fixo devem ser calculados para as condições de vôo reto nivelado, pouso de pista e pouso três pontos.

11.2.6.1 Vôo reto e nivelado

Os pontos de manobra manche fixo para vôo reto nivelado com tanque cheio e piloto pesado e com tanque cheio e piloto leve são:

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	4,9242	4,9252	4,9282	4,9309	4,9340	4,9375	4,9414	4,9458	4,9506	4,9569	4,9616	4,9677	4,9744	4,9892
a1 [rad-1]	3,3790	3,3796	3,3812	3,3826	3,3842	3,3861	3,3881	3,3905	3,3930	3,3964	3,3988	3,4021	3,4056	3,4134
hm	0,6644	0,6644	0,6644	0,6644	0,6644	0,6644	0,6644	0,6644	0,6644	0,6644	0,6645	0,6645	0,6645	0,6645

Tabela 11.20 - Pontos de manobra manche fixo para vôo reto com piloto pesado e tanque cheio

Tabela 11.21 - Pontos de manobra manche fixo para vôo reto com piloto leve e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	4,9242	4,9252	4,9282	4,9309	4,9340	4,9375	4,9414	4,9458	4,9506	4,9569	4,9616	4,9677	4,9744	4,9892
a1 [rad-1]	3,3790	3,3796	3,3812	3,3826	3,3842	3,3861	3,3881	3,3905	3,3930	3,3964	3,3988	3,4021	3,4056	3,4134
hm	0,6743	0,6743	0,6743	0,6743	0,6743	0,6743	0,6743	0,6743	0,6743	0,6744	0,6744	0,6744	0,6744	0,6744

11.2.7 Pouso de Pista

O ponto de manobra manche fixo para pouso de pista será:

$$h_{m} = h_{0} + \overline{V} \left(\frac{(a_{1})_{g}}{(a)_{g}} \right) \cdot \left(1 - \left(\frac{d\epsilon}{d\alpha} \right)_{g} \right) + \frac{\overline{V}(a_{1})_{g}}{2 \cdot \mu}$$

Tabela 11.22 - Pontos de manobra manche fixo para pouso de pista com piloto pesado

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,6831	3,6837	3,6855	3,6870	3,6888	3,6908	3,6931	3,6956	3,6984	3,7020	3,7047	3,7083	3,7121	3,7206
hm	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009	0,7009

Tabela 11.23 - Pontos de manobra manche fixo para pouso de pista com piloto leve

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,6831	3,6837	3,6855	3,6870	3,6888	3,6908	3,6931	3,6956	3,6984	3,7020	3,7047	3,7083	3,7121	3,7206
hm	0,7116	0,7116	0,7116	0,7116	0,7116	0,7117	0,7117	0,7117	0,7117	0,7117	0,7117	0,7117	0,7117	0,7118

11.2.8 Pouso três pontos

O ponto de manobra manche fixo para pouso três pontos será:

$$\mathbf{h}_{\mathrm{m}} = \mathbf{h}_{0} + \overline{\mathbf{V}} \left(\frac{(\mathbf{a}_{1})_{\mathrm{g}}}{(\mathbf{a})_{\mathrm{g}}} \right) \cdot \left(1 - \left(\frac{\mathrm{d}\varepsilon}{\mathrm{d}\alpha} \right)_{\mathrm{g}} \right) + \frac{\overline{\mathbf{V}}(\mathbf{a}_{1})_{\mathrm{g}}}{2 \cdot \mu}$$

Tabela 11.24 - Pontos de manobra manche fixo para pouso três pontos com piloto pesado

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,8858	3,8865	3,8883	3,8900	3,8918	3,8940	3,8964	3,8990	3,9019	3,9058	3,9086	3,9124	3,9164	3,9254
hm	0,7448	0,7448	0,7448	0,7448	0,7448	0,7448	0,7448	0,7448	0,7448	0,7447	0,7447	0,7447	0,7447	0,7447

Tabela 11.25 - Pontos de manobra manche fixo para pouso três pontos com piloto leve

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
(a)g [rad-1]	5,7120	5,7132	5,7167	5,7198	5,7234	5,7275	5,7320	5,7371	5,7427	5,7501	5,7554	5,7626	5,7703	5,7875
(a1)g [rad-1]	3,8858	3,8865	3,8883	3,8900	3,8918	3,8940	3,8964	3,8990	3,9019	3,9058	3,9086	3,9124	3,9164	3,9254
hm	0,7561	0,7561	0,7561	0,7561	0,7561	0,7561	0,7561	0,7561	0,7561	0,7561	0,7562	0,7562	0,7562	0,7562

11.2.9 Ponto de Manobra Manche Livre (h_m')

O Ponto de Manobra Manche Livre é a posição do C.G. para a qual não é necessária nenhuma alteração na força no manche para a realização de uma manobra.

O cálculo do Ponto de Manobra Manche Livre é feito pela seguinte expressão:

$$h_m' = h_{owb} + \overline{V} \cdot \overline{a_1} \cdot \left(\frac{\varepsilon_{\alpha}}{a_{wb}} + \frac{1}{2\mu}\right)$$

onde: howb - Posição do centro aerodinâmico do conjunto asa - fuselagem

 \overline{V} – Volume de cauda da aeronave

 $\overline{a_1}$ – Coeficiente parametrizado a partir de a_1, a_2, b_1, b_2

 ϵ_{α} – Efeito de Downwash

 a_{wb} – Coeficiente dC_L/d α do conjunto asa-fuselagem

 μ – parâmetro de densidade longitudinal

Sendo:

$$\overline{V} = \frac{S_t \cdot I_t}{S \cdot c} \qquad \overline{a_1} = a_1 - \left(\frac{b_1}{b_2}\right) \cdot a_2 \qquad \mu = \frac{W}{g \cdot \rho \cdot I_t \cdot S}$$

onde: $S_t - Area da empenagem horizontal$

lt – Distância entre os C.A.s da asa e da empenagem

S – Área da asa

c - corda média aerodinâmica da asa

 a_1 – Coeficiente dC_L/dada empenagem horizontal

 a_2 – Coeficiente dC_L/d η da empenagem horizontal

 b_1 – Coeficiente $dC_H/d\alpha$ da empenagem horizontal

 b_2 – Coeficiente dC_H/d\eta da empenagem horizontal

W - Peso máximo da aeronave

g – aceleração da gravidade

 ρ – densidade do ar

 l_t ' – Distância entre o centro de gravidade da aeronave e o centro aerodinâmico da empenagem horizontal.

Os pontos de manobra manche livre devem ser calculados para as condições de vôo reto nivelado, pouso de pista e pouso três pontos.

11.2.9.1 Vôo reto e nivelado

Os pontos de manobra manche livre para vôo reto nivelado com tanque cheio e piloto pesado e com tanque cheio e piloto leve são:

Tabela 11.26 - Pontos de manobra manche livre para vôo reto com piloto pesado e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	4,924	4,925	4,928	4,931	4,934	4,937	4,941	4,946	4,951	4,957	4,962	4,968	4,974	4,989
a1 [rad-1]	3,379	3,380	3,381	3,383	3,384	3,386	3,388	3,390	3,393	3,396	3,399	3,402	3,406	3,413
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$\overline{a_1}$	2,676	2,673	2,675	2,674	2,672	2,657	2,658	2,659	2,659	2,660	2,658	2,653	2,654	2,660
hm'	0,599	0,599	0,599	0,599	0,598	0,596	0,596	0,596	0,596	0,596	0,595	0,594	0,594	0,594

Tabela 11.27 - Pontos de manobra manche livre para vôo reto com piloto leve e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	4,924	4,925	4,928	4,931	4,934	4,937	4,941	4,946	4,951	4,957	4,962	4,968	4,974	4,989
a1 [rad-1]	3,379	3,380	3,381	3,383	3,384	3,386	3,388	3,390	3,393	3,396	3,399	3,402	3,406	3,413
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$\overline{a_1}$	2,676	2,673	2,675	2,674	2,672	2,657	2,658	2,659	2,659	2,660	2,658	2,653	2,654	2,660
hm'	0,610	0,610	0,610	0,609	0,609	0,607	0,607	0,607	0,607	0,606	0,606	0,605	0,605	0,605

11.2.9.2 Pouso de Pista

O ponto de manobra manche livre para pouso de pista será:

$$\left(h'_{m}\right)_{g} = h_{0} + \overline{V}\left(\frac{\left(\overline{a}_{1}\right)_{g}}{\left(a\right)_{g}}\right) \cdot \left(1 - \left(\frac{d\epsilon}{d\alpha}\right)_{g}\right) + \frac{\overline{V} \cdot \left(\overline{a}_{1}\right)_{g}}{2 \cdot \mu}$$

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	5,712	5,713	5,717	5,720	5,723	5,727	5,732	5,737	5,743	5,750	5,755	5,763	5,770	5,787
a1 [rad-1]	3,683	3,684	3,685	3,687	3,689	3,691	3,693	3,696	3,698	3,702	3,705	3,708	3,712	3,721
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$(\overline{a_1})_{e}$	5,009	5,007	5,010	5,012	5,012	4,998	5,002	5,005	5,009	5,013	5,015	5,014	5,019	5,034
hm'	0,873	0,872	0,872	0,872	0,872	0,870	0,870	0,870	0,870	0,870	0,870	0,869	0,869	0,870

 Tabela 11.28 - Pontos de manobra manche livre para pouso de pista com piloto pesado

Tabela 11.29 - Pontos de manobra manche livre para pouso de pista com piloto leve

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	5,712	5,713	5,717	5,720	5,723	5,727	5,732	5,737	5,743	5,750	5,755	5,763	5,770	5,787
a1 [rad-1]	3,683	3,684	3,685	3,687	3,689	3,691	3,693	3,696	3,698	3,702	3,705	3,708	3,712	3,721
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$(\overline{a_1})_{a}$	5,009	5,007	5,010	5,012	5,012	4,998	5,002	5,005	5,009	5,013	5,015	5,014	5,019	5,034
hm'	0,893	0,893	0,893	0,893	0,892	0,890	0,891	0,891	0,891	0,891	0,890	0,890	0,890	0,890

11.2.9.3 Pouso três pontos

O ponto de manobra manche fixo para pouso três pontos será:

$$(\mathbf{h'}_{m})_{g} = \mathbf{h}_{0} + \overline{\mathbf{V}}\left(\frac{(\overline{\mathbf{a}}_{1})_{g}}{(\mathbf{a})_{g}}\right) \cdot \left(1 - \left(\frac{d\varepsilon}{d\alpha}\right)_{g}\right) + \frac{\overline{\mathbf{V}} \cdot (\overline{\mathbf{a}}_{1})_{g}}{2 \cdot \mu}$$

Tabela 11.30 - Pontos de manobra manche livre para pouso três pontos com piloto pesado

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	5,712	5,713	5,717	5,720	5,723	5,727	5,732	5,737	5,743	5,750	5,755	5,763	5,770	5,787
a1 [rad-1]	3,886	3,886	3,888	3,890	3,892	3,894	3,896	3,899	3,902	3,906	3,909	3,912	3,916	3,925
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$(\overline{a_1})_{e}$	5,009	5,007	5,010	5,012	5,012	4,998	5,002	5,005	5,009	5,013	5,015	5,014	5,019	5,034
hm'	0,900	0,900	0,900	0,900	0,899	0,897	0,898	0,898	0,898	0,898	0,897	0,897	0,897	0,897

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a [rad-1]	5,712	5,713	5,717	5,720	5,723	5,727	5,732	5,737	5,743	5,750	5,755	5,763	5,770	5,787
a1 [rad-1]	3,886	3,886	3,888	3,890	3,892	3,894	3,896	3,899	3,902	3,906	3,909	3,912	3,916	3,925
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b1 [rad-1]	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221	-0,221
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
$(\overline{a_1})_a$	5,009	5,007	5,010	5,012	5,012	4,998	5,002	5,005	5,009	5,013	5,015	5,014	5,019	5,034
hm'	0,920	0,920	0,920	0,920	0,920	0,918	0,918	0,918	0,918	0,918	0,918	0,917	0,917	0,917

 Tabela 11.31 - Pontos de manobra manche livre para pouso três pontos com piloto leve

11.2.10 Margens Estáticas de Estabilidade

As margens estáticas de estabilidade estão apresentadas na tabela a seguir.

		Piloto pesado tanque cheio						
	Situação	hn		h		Hn		
Manche Fixo	Vôo reto e nivelado	0,	5773	(),22		0,3573	
	Situação	h'n		h		H'n		
Manche Livre	Vôo reto e nivelado	0,	5160	(),22		0,2960	

Labera 11.15 - Margens estaticas de estabilidade

		Piloto leve						
		tanque cheio						
	Situação	hn	h	Hn				
Manche Fixo	Vôo reto e nivelado	0,5773	0,28	0,2973				
	Situação	h'n	h	H'n				
Manche Livre	Vôo reto e nivelado	0,5160	0,28	0,2360				

		Piloto pesado tanque vazio						
	Situação	hn	h	Hn				
	Pouso de Pista	0,5776	0,21	0,3676				
Manche Fixo	Pouso três pontos	0,6445	0,21	0,4345				
	Situação	h'n	Н	H'n				
	Pouso de Pista	0,6059	0,21	0,3959				
Manche Livre	Pouso três pontos	0,6445	0,21	0,4345				

		Piloto leve tanque vazio						
	Situação	hn	h	Hn				
	Pouso de Pista	0,5776	0,27	0,3076				
Manche Fixo	Pouso três pontos	0,6445	0,27	0,3745				
	Situação	h'n	h	H'n				
	Pouso de Pista	0,6059	0,27	0,3359				
Manche Livre	Pouso três pontos	0,6445	0,27	0,3745				

11.2.11 Margens de Manobra

As margens de manobra estão apresentadas na tabela a seguir.

		Piloto pesado tanque cheio						
	Situação	hm		h		Hm		
Manche Fixo	Vôo reto e nivelado		0,6644	(0,22		0,4444	
	Situação	h'm		h		H'm		
Manche Livre	Vôo reto e nivelado		0,5972	(0,22		0,3772	

		Piloto leve						
		tanque cheio						
	Situação	hm	h	Hm				
Manche Fixo	Vôo reto e nivelado	0,6743	0,28	0,3943				
	Situação	h'm	h	H'm				
Manche Livre	Vôo reto e nivelado	0,6080	0,28	0,3280				

		Piloto pesado tanque vazio						
	Situação	hm	h	Hm				
	Pouso de Pista	0,7009	0,2100	0,4909				
Manche Fixo	Pouso três pontos	0,7448	0,2100	0,5348				
	Situação	h'm	h	H'm				
	Pouso de Pista	0,8712	0,2100	0,6612				
Manche Livre	Pouso três pontos	0,8985	0,2100	0,6885				

			Piloto leve tanque vazio	
	Situação	hm	h	Hm
	Pouso de Pista	0,7117	7 0,2700	0,4417
Manche Fixo	Pouso três pontos	0,756	I 0,2700	0,4861
	Situação	h'm	h	H'm
	Pouso de Pista	0,8915	5 0,2700	0,6215
Manche Livre	Pouso três pontos	0,9188	3 0,2700	0,6488

11.2.12 Deflexão do Profundor para Vôo Equilibrado

11.2.12.1 Fator de Carga igual a 1

Sabendo que $\overline{\eta}$ é função linear de $\overline{C_L}$, a expressão é dada por:

$$\overline{\eta} = A_1 \cdot \overline{C_L} + A_2$$

onde: A1 – Coeficiente de proporcionalidade

 $A_2-Constante \\$

Sendo:

$$A_{1} = \frac{1}{\overline{V} \cdot a_{2}} \cdot \left[(h - h_{owb}) - \frac{\overline{V} \cdot a_{1}}{a_{wb}} \cdot \varepsilon_{\alpha} \right] \qquad A_{2} = \frac{1}{\overline{V} \cdot a_{2}} \cdot \left(C_{mwb} - \overline{V} \cdot a_{1} \cdot i_{t} - \overline{V} \cdot a_{3} \cdot \delta \right)$$
$$\overline{V} = \frac{S_{t} \cdot I_{t}}{S \cdot \overline{c}} \qquad C_{L} = \frac{2 \cdot W}{\rho \cdot S \cdot V^{2}}$$

onde: Cmowb - Coeficiente de momento do conjunto asa-fuselagem

- S_t Área da empenagem horizontal
- lt Distância entre os C.A.s da asa e da empenagem
- S Área da asa
- c corda média aerodinâmica da asa
- \overline{V} Volume de cauda da aeronave
- a_1 Coeficiente dC_L/d α da empenagem horizontal
- a_2 Coeficiente dC_L/d η da empenagem horizontal
- ϵ_{α} Efeito de Downwash
- a_{wb} Coeficiente dC_L/d α do conjunto asa-fuselagem
- h-Posição do Centro de Gravidade da Aeronave
- h_{owb} Posição do centro aerodinâmico do conjunto asa-fuselagem
- it Ângulo de incidência da empenagem horizontal
- a_3 Coeficiente dC_L/d η da empenagem horizontal
- $\delta-Volume$ de cauda da aeronave

- W peso da aeronave
- ρ densidade do ar
- V velocidade da aeronave

Pela equação fornecida inicialmente, vê-se que o termo A_1 é dependente da posição do C.G. da aeronave (h).

Deve-se obter a equação para a deflexão do profundor em vôo equilibrado para todas as condições de carregamento e vôo da aeronave.

11.2.12.2 Vôo reto e nivelado

Tabela 11.32 - Deflexão do profundor para vôo reto e nivelado com piloto pesado e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a1 [rad-1]	3,379	3,380	3,381	3,383	3,384	3,386	3,388	3,390	3,393	3,396	3,399	3,402	3,406	3,413
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
A1	-0,298	-0,297	-0,297	-0,296	-0,295	-0,288	-0,287	-0,287	-0,286	-0,285	-0,283	-0,280	-0,279	-0,278
A1	-0,248	-0,247	-0,247	-0,246	-0,245	-0,239	-0,239	-0,238	-0,238	-0,237	-0,236	-0,233	-0,232	-0,231
A2	0,045	0,045	0,045	0,045	0,045	0,043	0,043	0,043	0,043	0,043	0,043	0,042	0,042	0,042
$\overline{\eta}$	-37,0	-27,2	-14,9	-10,3	-7,2	-5,1	-3,6	-2,6	-1,8	-1,0	-0,6	-0,2	0,1	0,6

Tabela 11.33 - Deflexão do profundor para vôo reto e nivelado com piloto leve e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a1 [rad-1]	3,379	3,380	3,381	3,383	3,384	3,386	3,388	3,390	3,393	3,396	3,399	3,402	3,406	3,413
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
A1	-0,298	-0,297	-0,297	-0,296	-0,295	-0,288	-0,287	-0,287	-0,286	-0,285	-0,283	-0,280	-0,279	-0,278
A1	-0,248	-0,247	-0,247	-0,246	-0,245	-0,239	-0,239	-0,238	-0,238	-0,237	-0,236	-0,233	-0,232	-0,231
A2	0,045	0,045	0,045	0,045	0,045	0,043	0,043	0,043	0,043	0,043	0,043	0,042	0,042	0,042
$\overline{\eta}$	-30,4	-22,2	-12,0	-8,1	-5,6	-3,8	-2,6	-1,7	-1,0	-0,4	-0,1	0,2	0,5	0,9

11.2.12.3 Pouso de Pista

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a1 [rad-1]	3,683	3,886	3,888	3,890	3,892	3,894	3,896	3,899	3,902	3,906	3,909	3,912	3,916	3,925
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
A1	-0,410	-0,408	-0,408	-0,407	-0,405	-0,395	-0,395	-0,394	-0,393	-0,391	-0,389	-0,385	-0,384	-0,382
A1	-0,369	-0,367	-0,367	-0,366	-0,364	-0,355	-0,355	-0,354	-0,353	-0,352	-0,350	-0,346	-0,345	-0,344
A2	0,050	0,054	0,054	0,054	0,053	0,052	0,052	0,052	0,051	0,051	0,051	0,050	0,050	0,050
$\overline{\eta}$	-51,5	-37,9	-21,0	-14,6	-10,4	-7,4	-5,4	-4,0	-2,8	-1,8	-1,3	-0,8	-0,3	0,4

 Tabela 11.34 - Deflexão do profundor para pouso de pista com piloto pesado

Tabela 11.35 - Deflexão do profundor para pouso de pista com piloto leve

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a1 [rad-1]	3,683	3,886	3,888	3,890	3,892	3,894	3,896	3,899	3,902	3,906	3,909	3,912	3,916	3,925
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
A1	-0,410	-0,408	-0,408	-0,407	-0,405	-0,395	-0,395	-0,394	-0,393	-0,391	-0,389	-0,385	-0,384	-0,382
A1	-0,369	-0,367	-0,367	-0,366	-0,364	-0,355	-0,355	-0,354	-0,353	-0,352	-0,350	-0,346	-0,345	-0,344
A2	0,050	0,054	0,054	0,054	0,053	0,052	0,052	0,052	0,051	0,051	0,051	0,050	0,050	0,050
$\overline{\eta}$	-46,1	-33,8	-18,6	-12,8	-9,0	-6,4	-4,6	-3,3	-2,3	-1,4	-0,9	-0,4	0,0	0,6

11.2.12.4 Pouso três pontos

Tabela 11.36 - Deflexão do profundor para pouso três pontos com piloto pesado

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a1 [rad-1]	3,886	3,886	3,888	3,890	3,892	3,894	3,896	3,899	3,902	3,906	3,909	3,912	3,916	3,925
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
A1	-0,446	-0,444	-0,444	-0,443	-0,441	-0,430	-0,430	-0,429	-0,428	-0,426	-0,424	-0,419	-0,418	-0,416
A1	-0,406	-0,404	-0,404	-0,403	-0,401	-0,391	-0,391	-0,390	-0,389	-0,387	-0,385	-0,381	-0,380	-0,378
A2	0,054	0,054	0,054	0,054	0,053	0,052	0,052	0,052	0,051	0,051	0,051	0,050	0,050	0,050
$\overline{\eta}$	-56,2	-41,5	-23,1	-16,1	-11,6	-8,3	-6,2	-4,6	-3,4	-2,3	-1,7	-1,1	-0,6	0,1

Tabela 11.37 - Deflexão do profundor para pouso três pontos com piloto leve

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a1 [rad-1]	3,886	3,886	3,888	3,890	3,892	3,894	3,896	3,899	3,902	3,906	3,909	3,912	3,916	3,925
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
A1	-0,446	-0,444	-0,444	-0,443	-0,441	-0,430	-0,430	-0,429	-0,428	-0,426	-0,424	-0,419	-0,418	-0,416
A1	-0,406	-0,404	-0,404	-0,403	-0,401	-0,391	-0,391	-0,390	-0,389	-0,387	-0,385	-0,381	-0,380	-0,378
A2	0,054	0,054	0,054	0,054	0,053	0,052	0,052	0,052	0,051	0,051	0,051	0,050	0,050	0,050
$\overline{\eta}$	-50,8	-37,5	-20,8	-14,4	-10,3	-7,3	-5,3	-3,9	-2,8	-1,8	-1,3	-0,7	-0,3	0,4

11.2.12.5 Gráficos

As figuras 7 e 8 apresentam os valores de deflexão do profundor para vôo equilibrado nas

diversas situações consideradas.

Figura 11.17 – Deflexões do profundor para vôo equilibrado em função do coeficiente de sustentação da aeronave - em graus

Figura 11.18 - Deflexões do profundor para vôo equilibrado em função da velocidade de vôo da aeronave

11.2.12.5.1 Fator de Carga máximo

A deflexão do profundor para vôo equilibrado com fator de carga máximo será obtida para todas as condições de carregamento e vôo da aeronave.

Tabela 11.38 - Deflexão do profundor durante manobras positivas em vôo normal com piloto pesado e

1	tanque	cheio	

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
n		1,00	1,71	2,33	3,04	3,80	3,80	3,80	3,80	3,80	3,80	4,80	5,80	7,80
$\overline{\eta}$		-27,3	-27,4	-27,3	-27,2	-26,2	-20,7	-16,6	-13,6	-10,7	-9,2	-10,3	-11,0	-11,8

Tabela 11.39 - Deflexão do profundor durante manobras positivas em vôo normal com piloto leve e

						tanqu	e cheio							
Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
n		1,00	1,71	2,33	3,04	3,80	3,80	3,80	3,80	3,80	3,80	4,80	5,80	7,80
$\overline{\eta}$		-22,3	-22,3	-22,3	-22,2	-21,4	-16,8	-13,4	-10,9	-8,5	-7,3	-8,1	-8,8	-9,4

Tabela 11.40 - Deflexão do profundor durante manobras negativas em vôo normal com piloto pesado e

						tanqu	e cheio							
Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
n		1,00	1,71	2,33	3,04	3,80	3,80	3,80	3,80	3,80	3,80	4,80	5,80	7,80
$\overline{\eta}$		27,3	27,4	27,3	27,2	26,2	20,7	16,6	13,6	10,7	9,2	10,3	11,0	11,8

 Tabela 11.41 - Deflexão do profundor durante manobras negativa em vôo normal com piloto leve e tanque cheio

						-								
Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
n		1,00	1,71	2,33	3,04	3,80	3,80	3,80	3,80	3,80	3,80	4,80	5,80	7,80
$\overline{\eta}$		22,3	22,3	22,3	22,2	21,4	16,8	13,4	10,9	8,5	7,3	8,1	8,8	9,4

A Figura 11.19 apresenta os resultados acima de forma gráfica.

Figura 11.19 – Deflexão do profundor para vôo equilibrado em manobras

11.2.13 Força no Manche para vôo Equilibrado

Como \overline{Pe} é uma função quadrática de V, sua expressão é dada por:

$$\overline{Pe} = B_1 + B_2 \cdot V^2$$

onde B_1 – Constante

B2 - Coeficiente de proporcionalidade quadrática

V - velocidade da aeronave

sendo:

$$B_{1} = m_{e} \cdot S_{\eta} \cdot \overset{=}{c}_{\eta} \cdot \left(\frac{W}{S}\right) \cdot \frac{b_{2}}{\overline{V} \cdot a_{2}} \cdot \left[(h - h_{owb}) - \frac{\overline{V} \cdot \overline{a_{1}}}{a_{wb}} \cdot \varepsilon_{\alpha}\right]$$
$$B_{2} = m_{e} \cdot \rho \cdot S_{\eta} \cdot \overset{=}{c} \cdot \frac{b_{2}}{2 \cdot \overline{V} \cdot a_{2}} \cdot \left(C_{mwb} - \overline{V} \cdot a_{1} \cdot i_{t} - \overline{V} \cdot a_{3} \cdot \delta\right)$$
$$\overline{V} = \frac{S_{t} \cdot I_{t}}{S \cdot \overline{c}} \qquad \overline{a_{1}} = a_{1} - \left(\frac{b_{1}}{b_{2}}\right) \cdot a_{2} \qquad \overset{=}{c}_{\eta} = \frac{2}{3} \cdot c_{r\eta} \cdot \left(\frac{1 + \lambda + \lambda^{2}}{\lambda + 1}\right)$$

onde me-Razão de engrasamento

Cmowb - Coeficiente de momento do conjunto asa-fuselagem

 S_t – Área da empenagem horizontal

lt – Distância entre os C.A.s da asa e da empenagem

 S_{η} – Área do Profundor

S – Área da asa

c – corda média aerodinâmica da asa

 \overline{V} – Volume de cauda da aeronave

 ϵ_{α} – Efeito de Downwash

 a_{wb} – Coeficiente dC_L/d α do conjunto asa-fuselagem

h - Posição do Centro de Gravidade da Aeronave

howb - Posição do centro aerodinâmico do conjunto asa-fuselagem

 i_t – Ângulo de incidência da empenagem horizontal

- a_3 Coeficiente dC_L/dd da empenagem horizontal
- ζ Deflexão do Compensador
- c_{η} corda média aerodinâmica do profundor
- $\overline{a_1}$ Coeficiente parametrizado a partir de a_1, a_2, b_1, b_2
- a_1 Coeficiente dC_L/da da empenagem horizontal
- a_2 Coeficiente dC_L/dh da empenagem horizontal
- b_1 Coeficiente dC_H/da da empenagem horizontal
- b2 Coeficiente dC_H/dh da empenagem horizontal
- W Peso máximo da aeronave
- ρ densidade do ar

A força no manche em vôo equilibrado será calculada para todas as condições de carregamento e vôo da aeronave.

11.2.13.1 Vôo reto e nivelado

 Tabela 11.42 - Força no manche para vôo reto e nivelado com piloto pesado e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
B1	-0,006	-0,009	-0,009	-0,009	-0,009	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008
B2	53,377	53,107	53,122	52,990	52,714	51,461	51,403	51,275	51,139	50,928	50,680	50,095	49,955	49,779
Pe [Kgf]	5,178	4,949	4,623	4,326	3,975	3,517	3,106	2,650	2,151	1,498	1,028	0,405	-0,249	-1,681

Tabela 11.43 - Força no manche para vôo reto e nivelado com piloto leve e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
B1	-0,006	-0,009	-0,009	-0,009	-0,009	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008
B2	46,413	46,178	46,191	46,076	45,836	44,747	44,696	44,585	44,466	44,284	44,068	43,559	43,437	43,285
Pe [Kgf]	4,468	4,242	3,917	3,621	3,274	2,833	2,423	1,968	1,471	0,820	0,354	-0,261	-0,913	-2,343

11.2.13.2 Pouso de pista

Fabela 11.44 - Força no manche	para pouso de	e pista com	piloto pesado
--------------------------------	---------------	-------------	---------------

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
B1	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007
B2	56,021	55,738	55,753	55,615	55,326	54,010	53,949	53,815	53,672	53,451	53,191	52,577	52,430	52,246
Pe [Kgf]	5,409	5,285	5,007	4,752	4,448	4,043	3,695	3,307	2,884	2,331	1,933	1,409	0,859	-0,345
Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
B1	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007	-0,007
B2	47,531	47,290	47,304	47,186	46,941	45,825	45,773	45,659	45,538	45,351	45,129	44,609	44,484	44,327
Pe [Kgf]	4,543	4,424	4,146	3,892	3,594	3,209	2,862	2,476	2,055	1,505	1,112	0,597	0,049	-1,152

Tabela 11.45 - Força no manche para pouso de pista com piloto leve

11.2.13.3 Pouso três pontos

Tabela 11.46 - Força no manche para pouso três pontos com piloto pesado

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
B1	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,007	-0,007	-0,007
B2	61,490	61,179	61,196	61,044	60,726	59,283	59,216	59,069	58,911	58,669	58,383	57,710	57,548	57,346
Pe [Kgf]	5,940	5,805	5,504	5,226	4,896	4,453	4,075	3,653	3,193	2,590	2,158	1,586	0,988	-0,322

 Tabela 11.47 - Força no manche para pouso três pontos com piloto leve

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
B1	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,008	-0,007	-0,007	-0,007
B2	53,000	52,731	52,746	52,615	52,341	51,097	51,039	50,913	50,777	50,568	50,322	49,741	49,602	49,428
Pe [Kgf]	5,075	4,944	4,642	4,366	4,041	3,619	3,241	2,821	2,364	1,765	1,336	0,774	0,178	-1,130

A Figura 11.20 apresenta os valores de força no manche para vôo equilibrado nas diversas situações consideradas.

Figura 11.20 - Força no manche para vôo equilibrado em função da velocidade de vôo - em kgf

11.2.14 Variação da deflexão do manche por "g" para realizar manobra

A variação da deflexão do manche por "g" para se realizar manobra, é obtida como:

$$Q_1 = \frac{2 \cdot W}{\rho \cdot V^2 \cdot S} \cdot \frac{H_m}{\overline{V} \cdot a_2 \cdot me}$$

Para o vôo reto nivelado, temos:

Tabela 11.48 - Variação da deflexão do manche para vôo reto e nivelado com piloto pesado e tanque

cheio	

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
Q1 [mm]	344	259	152	111	85	65	53	44	37	30	27	23	20	16

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
cL	2,317	1,752	1,030	0,757	0,579	0,458	0,371	0,306	0,257	0,213	0,189	0,165	0,145	0,114
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
Q1 [mm]	305	230	135	99	75	58	47	39	32	27	24	20	18	14

 Tabela 11.49 - Variação da deflexão do manche para vôo reto e nivelado com piloto leve e tanque cheio

A Figura 11.21 apresenta a variação da deflexão do manche para efetuar manobra de uma gravidade em função da velocidade de vôo.

Figura 11.21 - Variação da deflexão do manche para efetuar manobra de uma gravidade em função da velocidade de vôo - em milímetros

11.2.15 Normalização da Força no manche em relação ao fator de carga (n-1)

A força no manche por "g" é definido como:

$$Q_2 \equiv \frac{\Delta \overline{P_e}}{(n-1)} = -m_e \cdot S_\eta \cdot \overline{C_\eta} \cdot \left(\frac{W}{S}\right) \cdot \frac{b_2}{\overline{V} \cdot a_2} \cdot H'_m$$

Para o vôo reto nivelado, temos:

Tabela 11.50 - Variação da deflexão do manche para vôo reto e nivelado com piloto pesado e tanque

-	•
C	hein
· • •	

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
Q2 [N]	28,471	28,327	28,335	28,265	28,118	27,449	27,419	27,350	27,278	27,166	27,033	26,721	26,646	26,553
Q2 [kgf]	2,902	2,888	2,888	2,881	2,866	2,798	2,795	2,788	2,781	2,769	2,756	2,724	2,716	2,707

Tabela 11.51 - Variação da deflexão do manche para vôo reto e nivelado com piloto leve e tanque cheio

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80	90
a2 [rad-1]	2,025	2,035	2,034	2,039	2,050	2,100	2,102	2,108	2,113	2,122	2,132	2,157	2,163	2,171
b2 [rad-1]	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638	-0,638
Q2 [N]	24,757	24,631	24,638	24,577	24,449	23,868	23,841	23,782	23,719	23,621	23,506	23,235	23,170	23,088
Q2 [kgf]	2,524	2,511	2,512	2,505	2,492	2,433	2,430	2,424	2,418	2,408	2,396	2,368	2,362	2,354

A Figura 11.22 apresenta a variação da deflexão do manche para efetuar manobra de uma gravidade em função da velocidade de vôo.

Figura 11.22 - Normalização da força no Manche em relação em função da velocidade

11.2.16 Comentários

Na estimativa de passeio de CG, encontraram-se valores iguais a 23% a 28% para condição triciclo e 26% a 30% para convencional.

Ao ter calculado os pontos anteriormente citados, podemos adotar (sendo conservador) para "Limite traseiro do CG" o valor de 23% da corda aerodinâmica da asa %, pois é a menor margem de estabilidade calculada, esta na situação de Vôo Reto Nivelado Manche Livre para piloto leve e tanque cheio. A partir deste ponto têm-se problemas com a sensibilidade e reversão dos comandos.

A estimativa do passeio do CG, portanto apresentou uma margem muito pequena apenas para situação Vôo Reto Nivelado Manche Livre para piloto leve e tanque cheio, já que qualquer outra situação apresentou como limite traseiro de CG valores acima de 30%CMA o que estaria acima dos valores encontrados para condição triciclo(28%) e convencional(30%).

Para respeitar a condição de $|\overline{\eta} + \Delta \overline{\eta}| \le 30^{\circ}$, necessita-se que o vôo seja realizado a uma velocidade mínima de 27m/s, considerando fator de carga 1, ou seja vôo equilibrado. Quando se analisa vôos com fatores de cargas maiores, isto é realizando manobra, percebe-se a condição de $|\overline{\eta} + \Delta \overline{\eta}| \le 30^{\circ}$ é respeitada para toda velocidade.

O que foi dito acima, pode ser analisado também para a força no manche (Pe), ou seja devemos respeitar a condição de $\left|\overline{P_e}\right| \leq 5kgf$. Analisando a curva $\overline{P_e}.x.V$, chega-se a conclusão que para situação de pouso três ponto com piloto pesado e tanque vazio esta deverá ser realizada com uma velocidade acima de 40m/s, a fim de respeitar tal condição. Mas para vôo reto nivelado tanto para condição de piloto pesado ou leve, nota-se que a condição acima é respeitada para todas as velocidades.

Quando calcula-se a estabilidade da aeronave sob condição de cruzeiro, percebe-se que esta respeita condições de projeto, tais como: $|\overline{P_e}| \le 5kgf$ e $|\overline{\eta} + \Delta\overline{\eta}| \le 30^\circ$, com uma margem satisfatoriamente boa.

12 CÁLCULO DE CARGAS

A determinação das cargas atuantes na presente aeronave será efetuada segundo os requisitos impostos pela norma FAR Part 23 na sua subpart C.

12.1 Determinação do Envelope de Vôo

12.1.1 Definição das Velocidades

Nas subseções abaixo serão determinadas as seguintes velocidades:

- Velocidade de Cruzeiro
- Velocidade Nunca Excedida em Mergulho
- Velocidade de Manobra
- Velocidade Máxima de Operação com Flapes

12.1.2 Velocidade de Cruzeiro (VC)

De acordo com os requisitos impostos pelo parágrafo FAR-Part 23.335(a), tem-se que a velocidade de cruzeiro V_C estará no intervalo abaixo:

(1) A velocidade de cruzeiro não pode ser menor que 33√W/S. Onde as unidades dessas grandezas anteriormente citadas são, respectivamente, lbf e ft².
 Para o presente caso:

$$V_c > 33\sqrt{1622/139,5}$$

 $V_c > 112,5 \ knots$

(2) A velocidade de cruzeiro não deve exceder 90% da velocidade máxima nivelada. Para o presente projeto, dos cálculos de desempenho, tem-se que a velocidade máxima nivelada é de 132,3 knots, assim:

$$V_c < 0.9 \cdot 132.3$$

$V_c < 119,1 \, knots$

Será adotado para o presente projeto, como calculado no capítulo "Cálculo de Desempenho":

 $V_{c} = 115,8 \ knots$

12.1.3 Velocidade Nunca Excedida em Mergulho (VD)

A velocidade nunca excedida em mergulho de uma aeronave é determinada segundo os requisitos apresentados pelo parágrafo FAR-Part 23.335(b).

(1) A velocidade nunca excedida em mergulho deve obedecer à relação $V_D / M_D > 1,25 \cdot V_C / M_C$.

Para o presente caso:

$$V_D > 1,25 \cdot 0,73 \cdot 115,8 = 106,1 \ knots$$

(2) A velocidade nunca excedida em mergulho não deve ser menor que 140% do limite inferior estabelecido para a velocidade de cruzeiro.

Para o presente projeto, tem-se:

$$V_D > 1,4 \cdot 112,5 = 157,5 \ knots$$

Para o presente projeto, será adotado o valor a seguir:

$$V_D = 157,5 \ knots$$

12.1.4 Velocidade de Manobra

Os requisitos apresentados no parágrafo FAR-Part 23.335(c) estabelecem a velocidade de manobra V_A .

(1) A velocidade de manobra não deve ser inferior que $V_s \sqrt{n}$, sendo' V_s ' a velocidade de estol sem flapes com a aeronave em peso de projeto e 'n' o fator de carga máximo definido para o projeto.

Para o presente projeto tem-se que a velocidade de estol é de 44,7 knots. O máximo fator de carga para a aeronave é de 3,8.

$$V_A > 44,7\sqrt{3,8}$$

 $V_A > 87,1 \, knots$

(2) A velocidade de manobra não deve exceder a velocidade de cruzeiro.

Tendo em vista a velocidade de cruzeiro determinada na seção 1.1.1 é observado que o presente requisito para V_A é atendido.

12.1.5 Velocidade Máxima de Operação com Flapes

A velocidade máxima de operação com flapes pode ser estabelecida seguindo os requisitos apresentados pelo parágrafo FAR-Part 23.345(b).

A velocidade máxima de operação com flapes deve ser maior que $1,4 \cdot V_s$ ou $1,8 \cdot V_{SF}$, sendo V_s a velocidade de estol sem flapes e V_{SF} a velocidade de estol com flapes defletidos.

Para o presente projeto essas velocidades são $V_s = 44,7 \text{ knots}$ e $V_{sF} = 38,7 \text{ knots}$

Dessa forma, a velocidade máxima de operação com flapes será:

$$V_{F} = 69,8 \ knots$$

12.2 Definição dos Fatores de Carga

12.2.1 Fatores de Carga de Manobra

Os requisitos FAR-Part 23 indicam que os fatores de carga de manobra para aeronaves da categoria normal são +3,8 e -1,5 (FAR-Part 23.337). E quando em operação com flapes o limite de carga máximo será de 2,0 (FAR-Part 23.345(a)1).

Sendo assim, para a presente aeronave tem-se:

n = +3,8; -1,5

12.2.2 Fatores de Carga de Rajada

Os fatores de carga de rajada podem ser calculados segundo o requisito FAR-Part 23.341 segundo a expressão abaixo:

$$n = 1 \pm \frac{Kg \cdot Ude \cdot V \cdot a}{498 \cdot (W/S)}$$

Sendo: Ude a velocidade de rajada;

Kg o fator de alívio da rajada igual a
$$Kg = \frac{0.88 \cdot \mu_g}{5.3 \cdot + \mu_g};$$

$$\mu_g$$
 o fator de massa da aeronave igual a $\mu_g = \frac{2 \cdot (W/S)}{\rho \cdot C \cdot a \cdot g}$;

O valor de "a" (variação do coeficiente de sustentação da aeronave com o ângulo de ataque da mesma), deve ser um valor médio. Dos cálculos aerodinâmicos" tem-se que:

$$a \cong 4.89 \ rd^{-1}$$

e assim:

$$\mu_g = 20,3$$
$$Kg = 0,786$$
$$n = 1 \pm 0,00059 \cdot V \cdot Ude$$

Os requisitos FAR-Part23 impõe que se calcule tais fatores para duas condições de vôo; (i) em velocidade de cruzeiro e (ii) em velocidade nunca excedida em mergulho. Sendo que as velocidades de rajada devem ser 50 ft/s para vôo em velocidade de cruzeiro e 25 ft/s para vôo em velocidade nunca excedida em mergulho (FAR-Part 23.333(c)1). Para o presente projeto os fatores de carga devido rajada serão conforme apresentado na Tabela 12.1:

Tabela 12.1 – Fatores d	le carga devido	a rajada
-------------------------	-----------------	----------

Velocidade de cruzeiro		n =	4,90
V= 115,8 knots	Ude= 50 ft/s	n =	-2,90
Velocidade de mergulho		n =	3,32
V= 157,5 knots	Ude= 25 ft/s	n =	-1,32

12.3 Curvas de Vôo com Coeficiente de Sustentação Máximo

As curvas de vôo com coeficiente de sustentação máximo são obtidas de:

$$n \cdot W = L = \frac{1}{2} \cdot \rho \cdot V^2 \cdot S \cdot C_L$$
$$n = \frac{\rho \cdot V^2 \cdot S \cdot C_{L \max}}{2 \cdot W}$$

Dessa forma, serão consideradas duas condições: (i) vôo sem flape e (ii) vôo com flape.

$$C_{L \max} \Big|_{\lim po} = 1,34 \quad e \quad C_{L \max} \Big|_{flape} = 2,44$$

Assim, ter-se á:

$$n\Big|_{\lim po} = 0,00050047 \cdot V^2 e$$

 $n\Big|_{flape} = 0,00066450 \cdot V^2$

Figura 12.2 – Diagrama V-n (velocidade [kph])

12.5 Cálculos de Cargas na Asa

12.5.1 Cargas Aerodinâmicas

As cargas devidas às forças aerodinâmicas na asa serão calculadas de acordo com o método de Stender, considerando a aeronave com carregamento de peso máximo de decolagem.

Os cálculos serão realizados através de um programa computacional desenvolvido pela aplicação do método. Este programa resolve o problema da distribuição de sustentação ao longo da envergadura da asa.

12.5.1.1 Distribuição de Sustentação

Os resultados obtidos a partir do programa que aplica o método de Stender estão apresentados na tabela 12.2 a seguir.

Estação	Estação [m]	Sustentação [kgf]
1	5,25	0
2	5,08	12,69405
3	4,73	16,8851
4	4,38	19,37065
5	4,03	21,25315
6	3,68	22,8052
7	3,33	24,1395
8	2,98	25,31375
9	2,63	26,3614
10	2,28	27,3031
11	1,93	28,15225
12	1,58	28,9176
13	1,23	29,6049
14	0,88	30,2176
15	0,53	30,75735
16	0,18	31,2244

Tabela 12.2 – Distribuição de sustentação ao longo da semi-envergadura para W = 750 kgf

12.5.1.2 Cargas de Manobras Simétricas

A tabela 12.3 apresenta os esforços para carga nas asas em manobras simétricas. Os esforços foram obtidos para fator de carga igual a 1 e os esforços limites foram obtidos para carregamento com fator de carga igual a 5,39.

Estação [m]	Sustentação Total [kgf]	Cortante [kgf]	Fletor [kgf]	Cortante Limite [kgf]	Fletor Limite [kgf]
5,25	0,00	0,00	0,00	0,00	0,00
5,08	12,69	12,69	0,00	62,20	0,00
4,73	16,89	29,58	4,44	144,94	21,77
4,38	19,37	48,95	14,80	239,85	72,50
4,03	21,25	70,20	31,93	343,99	156,45
3,68	22,81	93,01	56,50	455,74	276,85
3,33	24,14	117,15	89,05	574,02	436,35
2,98	25,31	142,46	130,05	698,06	637,26
2,63	26,36	168,82	179,92	827,23	881,58
2,28	27,30	196,13	239,00	961,02	1171,12
1,93	28,15	224,28	307,65	1098,96	1507,47
1,58	28,92	253,20	386,14	1240,66	1892,11
1,23	29,60	282,80	474,76	1385,72	2326,34
0,88	30,22	313,02	573,74	1533,79	2811,34
0,53	30,76	343,78	683,30	1684,50	3348,17
0,18	31,22	375,00	803,62	1837,50	3937,74

Tabela 12.3 – Cargas nas asas em manobras simétricas

12.5.1.3 Cargas de Manobras Assimétricas

O regulamento FAR-PART 23.349 prevê que as cargas assimétricas nas asas de aeronaves normais devem ser consideradas como 100% da carga em uma asa e 70% da carga na asa oposta, quando a aeronave possui massa de até 1000 pounds. Se a aeronave apresentar massa superior a 1000 pounds, como é o caso do Brati, esse percentual deve ser aumentado linearmente até 75% em 12500 pounds. Assim, nosso projeto deverá apresentar 70,28% da carga na asa oposta, pois sua massa é de 1654 pounds.

A tabela 12.4 apresenta os esforços na asa menos carregada para manobras assimétricas.

Tabela 12.4 – Cargas na asa menos carregada em manobras assimétricas sem deflexão do aileron

Estação [m]	Sustentação [kgf]	Cortante [kgf]	Fletor [kgf]	Cortante Limite [kgf]	Fletor Limite [kgf]
5,25	0,00	0,00	0,00	0,00	0,00
5,08	8,92	8,92	0,00	43,71	0,00
4,73	11,87	20,79	3,12	101,86	15,30
4,38	13,61	34,40	10,40	168,57	50,95
4,03	14,94	49,34	22,44	241,76	109,95
3,68	16,03	65,37	39,71	320,29	194,57
3,33	16,97	82,33	62,59	403,42	306,67
2,98	17,79	100,12	91,40	490,60	447,87
2,63	18,53	118,65	126,44	581,38	619,58
2,28	19,19	137,84	167,97	675,40	823,06
1,93	19,79	157,62	216,21	772,35	1059,45
1,58	20,32	177,95	271,38	871,94	1329,77
1,23	20,81	198,75	333,66	973,89	1634,95
0,88	21,24	219,99	403,23	1077,95	1975,81
0,53	21,62	241,61	480,22	1183,87	2353,09
0,18	21,94	263,55	564,78	1291,40	2767,45

12.5.1.4 Cargas nas Asas em Manobras de Rolamento

A carga alar no aileron é dada por:

$$\overline{\mathbf{w}} = 0,466 \cdot \mathbf{n} \cdot \frac{\mathbf{W}}{\mathbf{S}}$$

Assim para aeronave pesando 750 kgf, e sendo a área alar da aeronave de 12,96 m² e o fator de carga máximo de 5,39 g, a carga alar no aileron será de:

$$\overline{w} = 145,36 \, kgf / m^2$$

Sendo a área do aileron igual a 0,5699 m²:

$$P = 82,84 \ kgf$$

A tabela 12.5 apresenta os valores de cortante e momento fletor no aileron para cada estação, considerando a transferência de carga do aileron para a asa feita através das charneiras de articulação.

Estação [m]	Carga no Aileron [kgf]	Cortante no Aileron [kgf]	Fletor no Aileron [kgf]
5,25		0,00	0,00
5,08		0,00	0,00
4,73	37,65	37,65	0,00
4,38		37,65	13,18
4,03		37,65	26,36
3,68		37,65	39,54
3,33	37,65	75,31	52,72
2,98		75,31	79,07
2,63		75,31	105,43
2,28		75,31	131,79
1,93		75,31	158,15
1,58		75,31	184,50
1,23		75,31	210,86
0,88		75,31	237,22
0,53		75,31	263,58
0,18		75,31	289,93

Tabela 12.5 – Cargas no aileron

Assim, de acordo com o parágrafo FAR-PART 23.349, as cargas resultantes da deflexão máxima do ailerons, somadas a 66% das cargas devidas às manobras simétricas, serão o carregamento durante manobras de rolamento atuante na asa. A tabela 12.6 apresenta os valores de esforços limites para esta condição.

Estação [m]	Sustentação [kgf]	Cortante [kgf]	Fletor [kgf]	Carga no Aileron [kgf]	Cortante no Aileron [kgf]	Fletor no Aileron [kgf]	Cortante Limite [kgf]	Fletor Limite [kgf]
5,25	0,00	0,00	0,00		0,00	0,00	0,00	0,00
5,08	41,47	41,47	0,00		0,00	0,00	41,47	0,00
4,73	55,16	96,63	14,51	37,65	37,65	0,00	134,28	14,51
4,38	63,28	159,90	48,33		37,65	13,18	197,56	61,51
4,03	69,43	229,33	104,30		37,65	26,36	266,98	130,66
3,68	74,50	303,83	184,56		37,65	39,54	341,48	224,10
3,33	78,86	382,68	290,90	37,65	75,31	52,72	457,99	343,62
2,98	82,69	465,37	424,84		75,31	79,07	540,68	503,91
2,63	86,11	551,49	587,72		75,31	105,43	626,80	693,15
2,28	89,19	640,68	780,74		75,31	131,79	715,99	912,53
1,93	91,96	732,64	1004,98		75,31	158,15	807,95	1163,13
1,58	94,46	827,11	1261,41		75,31	184,50	902,41	1445,91
1,23	96,71	923,82	1550,89		75,31	210,86	999,12	1761,75
0,88	98,71	1022,53	1874,23		75,31	237,22	1097,83	2111,45
0,53	100,47	1123,00	2232,11		75,31	263,58	1198,31	2495,69
0,18	102,00	1225,00	2625,16		75,31	289,93	1300,31	2915,10

Tabela 12.6 – Cargas nas asas em manobras de rolamento

A figura 12.3 apresenta a comparação entre os esforços cortante e momentos fletores limites da asa para as condições de manobras simétrica e rolamento de vôo. Pode-se observar que, de fato, a condição simétrica ainda é mais crítica para grande extensão da asa.

Figura 12.3 – Esforços cortante e momentos fletores limites na asa para condição simétrica e rolamento de vôo

A Tabela 12.7 apresenta o envelope de esforços nas asas, combinando as condições de manobras simétrica e de manobras assimétricas com deflexão do aileron. Estes resultados também são apresentados na Figura 12.4.

Figura 12.4 – Envelope de esforços nas asa

Estação [m]	Cortante [kgf]	Fletor [kgf]
5,25	0,00	0,00
5,08	62,20	0,00
4,73	144,94	21,77
4,38	239,85	72,50
4,03	343,99	156,45
3,68	455,74	276,85
3,33	574,02	436,35
2,98	698,06	637,26
2,63	827,23	881,58
2,28	961,02	1171,12
1,93	1098,96	1507,47
1,58	1240,66	1892,11
1,23	1385,72	2326,34
0,88	1533,79	2811,34
0,53	1684,50	3348,17
0,18	1837,50	3937,74

Tabela 12.7 – Envelope de esforços nas asas

12.6 Cargas no Trem de Aterragem

As considerações apresentadas a seguir foram obtidas do regulamento FAR-PART 23 quanto a determinação das cargas no trem de pouso da aeronave em projeto e serão utilizadas para o calcular as cargas atuantes no trem de pouso.

- (1) O peso da aeronave para o cálculo das cargas no trem de pouso deve ser o máximo de decolagem previsto no projeto (FAR-PART 23.473(a)). Nosso projeto apresenta peso máximo de decolagem igual a 750 kgf.
- (2) A velocidade vertical durante o pouso pode ser determinada pela seguinte equação, devendo estar entre 2,13 e 3,05 m/s (FAR-PART 23.473 (d) e JAR-VLA 473(b)).

$$Vv = 0.61 \cdot \left(\frac{W}{S}\right)^{0.25}$$
$$Vv = 2.98$$

- (3) A sustentação da aeronave não deve exceder dois terços do seu valor máximo, e as reações no solo devem levar em consideração o alívio devido à sustentação (FAR-PART 23.473 (e)). Para o presente caso, o valor máximo da sustentação será 500 kgf.
- (4) A altura da queda da aeronave pode ser determinada pela seguinte equação, devendo estar entre 0,235 e 0,475m (FAR-PART 23.473 (d) / FAR-PART 23.725).

$$h = 0,0132 \cdot \sqrt{\frac{W}{S}}$$
$$h = 0,315 \text{ m}$$

(5) O fator de carga de inércia utilizado não pode ser menor que 2,67 e o fator de carga das reações no solo não pode ser menor que 2,0 (FAR-PART 23.473 (e)).

Com essas considerações pode-se então partir para cálculo das cargas atuantes no sistema de trem de pouso da aeronave.

12.6.1 Fatores de Carga para Pouso

Será adotado como fator de carga das reações no solo $n_g = 2,0$. Desta forma, o fator de carga de inércia que ainda atua no centro e gravidade da aeronave será:

$$n = n_g + \frac{L}{W} = 2,67$$

12.6.2 Cargas no Solo

As condições de carga no solo a serem consideradas são apresentadas nos parágrafos FAR-PART 23.479 a FAR-PART 23.499.

12.6.2.1 Aterragem Nivelada (Três Pontos) – Trem de Pouso Triciclo

Para aterragem em três pontos tem-se a configuração apresentada na figura 12.5. O coeficiente de atrito foi estimado em 0,25.

Figura 12.5 – Aterragem em três pontos

(1) Componente vertical no trem principal (em cada roda)

$$V_{M} = \frac{W}{2} \cdot n_{g} \cdot \left(\frac{b - \mu h}{a + b}\right) = 355,74 \text{ kgf}$$

(2) Componente horizontal no trem principal

$$H_M = \mu \cdot V_M = 88,94 \text{ kgf}$$

(3) Componente vertical no trem do nariz

$$V_N = W \cdot n_g \cdot \left(\frac{a + \mu h}{a + b}\right) = 796,25 \text{ kgf}$$

(4) Componente horizontal no trem do nariz

$$H_{N} = \mu \cdot V_{N} =$$
 199,06 kgf

(5) Componente vertical no centro de gravidade

$$V_{CG} = W \cdot n =$$
 2002,50 kgf

(6) Componente horizontal no centro de gravidade

$$H_{CG} = \mu \cdot V_{CG} = 500,63$$
 kgf

12.6.2.2 Aterragem em Três Pontos – Trem de Pouso Convencional

Para aterragem em três pontos tem-se a configuração apresentada na figura 12.6. O coeficiente de atrito foi estimado em 0,25.

Figura 12.6 – Aterragem em três pontos

(1) Componente vertical no trem principal (em cada roda)

$$V_{M} = \frac{W}{2} \cdot n_{g} \cdot \left(\frac{b + \mu h}{a + b}\right) = 725,28 \text{ kgf}$$

(2) Componente horizontal no trem principal

$$H_{M} = \mu \cdot V_{M} =$$
 181,32 kgf

(3) Componente vertical na bequilha

$$V_T = W \cdot n_g \cdot \left(\frac{a}{a+b}\right) = 110,54 \text{ kgf}$$

(4) Componente horizontal na bequilha

$$H_T = \mu \cdot V_T = 27,63 \text{ kgf}$$

(5) Componente vertical no centro de gravidade

$$V_{CG} = W \cdot n = 2002,50 \text{ kgf}$$

(6) Componente horizontal no centro de gravidade

$$H_{CG} = \mu \cdot V_{CG} =$$
 500,63 kgf

12.6.2.3 Aterragem nas Duas Rodas Principais

Para aterragem em duas rodas têm-se as configurações apresentadas nas figuras 12.7 e 12.8.

Figura 12.7 – Aterragem nas duas rodas principais (Triciclo)

Figura 12.8 – Aterragem nas duas rodas principais (Convencional)

(1) Componente vertical no trem principal (em cada roda)

$$V_M = \frac{W}{2} \cdot n_g =$$
 750,00 kgf

(2) Componente horizontal no trem principal

$$H_{M} = \mu \cdot V_{M} =$$
 187,50 kgf

(3) Componente vertical no centro de gravidade

$$V_{CG} = W \cdot n =$$
 2002,50 kgf

(4) Componente horizontal no centro de gravidade

$$H_{CG} = \mu \cdot V_{CG} = 500,63 \text{ kgf}$$

12.6.2.4 Aterragem em uma Roda

Para aterragem em uma roda tem-se a configuração apresentada na figura 12.9. A inclinação da aeronave deve ser desconsiderada.

Figura 12.9 - Aterragem em uma roda

(1) Componente vertical na roda

$$V = W \cdot n_{o} = 1500,00 \text{ kgf}$$

(2) Componente horizontal na roda

$$H_{M} = \mu \cdot V = 375,00 \text{ kgf}$$

12.6.2.5 Cargas Laterais na Aterragem

Para a determinação das cargas laterais durante a aterragem, as seguintes condições devem ser observadas:

- (1) A aeronave está em atitude nivelada com apenas o trem principal em contato com o solo.
- (2) O fator de carga vertical deve ser igual a 1,33, dividindo-se a carga nesta direção igualmente para as duas rodas do trem principal.
- (3) O fator de carga lateral deve ser igual a 0,83, sendo 0,5 para a roda do lado interno e 0,33 para a roda do lado externo.

Desta forma, as cargas laterais na aterragem serão aplicadas de acordo com a figura 12.10, e as suas magnitudes serão conforme apresentado a seguir.

Figura 12.10 – Cargas laterais

(1) Componente vertical no solo (em cada roda)

$$V_g = \frac{W}{2} \cdot n_v = 498,75 \text{ kgf}$$

(2) Componente horizontal no solo (na roda do lado interno)

$$H_{g} = W \cdot n_{lint} = 375,00 \text{ kgf}$$

(3) Componente horizontal no solo (na roda do lado externo) $H_{g} = W \cdot n_{lext} = 247,50 \text{ kgf}$

12.6.2.6 Cargas de Frenagem

Para calcular as cargas de frenagem, o fator de carga vertical aplicado deve ser de 1,33 e as componentes horizontais, devido a frenagem, devem ser iguais a 80% das componentes verticais.

(1) Componente vertical no solo (em cada roda)

$$V = \frac{W}{2} \cdot n_v = 498,75 \text{ kgf}$$

(2) Componente horizontal no solo (na roda do lado interno)

$$H = 0.80 \cdot V = 399.00 \text{ kgf}$$

12.6.2.7 Condições Suplementares para a Bequilha

O parágrafo FAR-PART 23.497 (a) prevê que a carga vertical obtida para o caso de pouso de três pontos (V_T =110,54 kgf) deve ser também aplicada para cima e na frente da bequilha em um ângulo de 45° prevendo situação de colisão com obstáculos no solo. A figura 12.11 representa esta situação.

Figura 12.11 – Aplicação da carga na bequilha para casos de impacto com obstáculos

O parágrafo FAR-PART 23.497 (b) prevê que uma carga lateral deve ser aplicada a bequilha. Tal carga deve ter a mesma magnitude da carga vertical estática que atua na bequilha quando a aeronave está direcionada. Para o caso de bequilha fixa, tal carga deve ser aplicada na bequilha com a roda posicionada paralela ao eixo longitudinal da aeronave.

A carga vertical na bequilha, para a condição da aeronave estacionada será:

$$V = \frac{a}{a+b} \cdot W = 55,27 \text{ kgf}$$

12.6.2.8 Condições Suplementares para o Trem do Nariz

O parágrafo FAR-PART 23.499 (a) prevê que para cargas traseiras, a componente vertical precisa ser de 225% da carga estática e a componente horizontal precisa ser 80% da componente vertical.

O parágrafo FAR-PART 23.499 (b) prevê que para cargas dianteiras, a componente vertical precisa ser de 225% da carga estática e a componente dianteira precisa ser 40% da componente vertical.

O parágrafo FAR-PART 23.499 (c) prevê que para cargas laterais, a componente vertical precisa ser de 225% da carga estática e a componente lateral precisa ser 70% da componente vertical.

12.7 Cálculo de Cargas nas Empenagens

12.7.1 Cargas na Empenagem Horizontal

Deve-se calcular as cargas na empenagem horizontal em duas condições:

- Durante o início de uma manobra: combinação de equilíbrio para vôo com fator de carga inicial, mais o acréscimo de carga necessário para aplicação de uma nova condição de vôo com um novo fator de carga.
- Durante a execução da manobra: carga de equilíbrio para vôo com um fator de carga diferente de um.

12.7.1.1 Cargas de Equilíbrio na Empenagem Horizontal para Vôo com Fator de Carga Um

Dos cálculos de estabilidade e controle tem-se que o coeficiente de sustentação na empenagem para vôo equilibrado é dado por:

$$P = \frac{1}{2} \cdot \rho \cdot V^{2} \cdot S_{EH} \cdot \left(\frac{C_{Mo} + C_{L}(h - h_{o})}{\overline{V}}\right)$$

Sendo:

$$C_L = \frac{2 \cdot W}{\rho \cdot S \cdot V^2}$$

As condições que devem ser calculadas as cargas de equilíbrio são:

- Piloto pesado e tanque cheio (h = 27% c.m.a)
- Piloto leve e tanque cheio (h = 21% c.m.a.)
- Piloto pesado e tanque vazio (h = 28 % c.m.a.)
- Piloto leve e tanque vazio (h = 22 % c.m.a.)

Tem-se também dos cálculos de estabilidade e controle que:

- Coefficiente de volume de cauda horizontal $\bar{V}_{EH} = 0.637$
- Centro aerodinâmico da aeronave $h_o = 21,56\%$ c.m.a.
- Coeficiente de momento $C_{Mo} = 0.000$

Para a faixa de velocidades estudada ter-se-á na Tabela as cargas de equilíbrio na empenagem horizontal.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
h=0,27	9 73	9 73	9.73	9 73	9 73	973	9.73	9.73	9.73	9 73	9.73	9 73	9 73
W=563,3Kgf	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	0,70	5,75	5,70
h=0,21	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14	_1 14
W=641,3Kgf	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14	-1,14
h=0,28	13.86	13.86	13.86	13.86	13.86	13.86	13.86	13.86	13.86	13.86	13.86	13.86	13.86
W=678,3Kgf	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00
h=0,22	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
W=756,3Kgf	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Tabela 12.8 – Cargas de equilíbrio na empenagem horizontal [kgf]

12.7.1.2 Cargas de Equilíbrio na Empenagem Horizontal para Vôo com Fatores de Carga Limites

Semelhantemente ao item 1.1 tem-se que o coeficiente de sustentação na empenagem para vôo equilibrado é dado por:

$$P = \frac{1}{2} \cdot \rho \cdot V^{2} \cdot S_{EH} \cdot \left(\frac{C_{Mo} + C_{L}(h - h_{o})}{\overline{V}}\right)$$

Entretanto,

$$C_{L} = \frac{2 \cdot n \cdot W}{\rho \cdot S \cdot V^{2}}$$

Onde n é o fator de carga limite.

As condições que devem ser calculadas as cargas de equilíbrio são:

- Piloto pesado e tanque cheio (h = 27% c.m.a)
- Piloto leve e tanque cheio (h = 21 % c.m.a.)
- Piloto pesado e tanque vazio (h = 28% c.m.a.)
- Piloto leve e tanque vazio (h = 22 % c.m.a.)

Para cobrir todo o envelope de vôo da presente aeronave montar-se-á a Tabela 12.9 que sintetiza as condições de operação nas diversas velocidades de vôo em relação aos fatores de carga limites considerando manobras positivas e a considerando manobras invertidas.

Tabela 12.9 – Cargas de equilíbrio na empenagem horizontal para vôo com fator de carga limite positivos [kgf]

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
n (+)	0,00	1,00	1,70	2,31	3,02	3,80	3,80	3,80	3,80	3,80	3,80	3,80	3,80
h=0,27	0.00	0.72	16 54	22 51	20 10	36.06	36.06	36.06	36.06	36.06	36.06	36.06	36.06
W=563,3Kgf	0,00	5,72	10,04	22,01	29,40	30,90	50,90	30,90	50,90	30,90	50,90	50,90	50,90
h=0,21	0.00	_1 14	_1 04	-2.64	-3 45	_4 33	_4 33	_4 33	-4 33	_4 33	-4 33	-4 33	_4 33
W=641,3Kgf	0,00	-1,14	-1,54	-2,04	-0,+0	-4,55	-4,00	-4,50	-4,00	-4,00	-4,00	-4,00	-4,00
h=0,28	0.00	13.96	23 57	33.08	41 01	52 68	52 69	52 69	52.68	52 69	52.68	52.68	52.68
W=678,3Kgf	0,00	15,00	23,57	52,00	41,91	52,00	52,00	52,00	52,00	52,00	52,00	52,00	52,00
h=0,22	0.00	1.06	1 90	2 4 4	3 10	1 01	4.01	1 01	1 01	1 01	4 01	4 01	4.01
W=756,3Kgf	0,00	1,00	1,00	2,44	5,19	4,01	4,01	4,01	4,01	4,01	4,01	4,01	4,01

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
n (+)	0,00	1,00	1,70	2,31	3,02	3,80	3,80	3,80	3,80	3,80	3,80	3,80	3,80
h=0,27	-9.81	-12 98	-14 78	-14 78	-14 78	-14 78	-14 78	-14 78	-14 78	-14 78	-14 78	-14 78	-14 78
W=563,3Kgf	0,01	12,00	14,70	14,70	14,70	14,70	14,70	14,70	14,70	14,70	14,70	14,70	14,70
h=0,21	1 15	1 5 2	1 73	1 73	1 73	1 73	1 73	1 73	1 73	1 73	1 73	1 73	1 73
W=641,3Kgf	1,10	1,52	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75	1,75
h=0,28	-13 00	-18 51	-21.07	-21.07	-21.07	-21.07	-21.07	-21.07	-21.07	-21.07	-21.07	-21.07	-21.07
W=678,3Kgf	-13,99	-10,01	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07
h=0,22	-1 07	_1 41	-1 61	-1 61	-1 61	-1 61	-1 61	-1 61	-1 61	-1 61	-1 61	-1 61	-1 61
W=756,3Kgf	-1,07	-1,41	-1,01	-1,01	-1,01	-1,01	-1,01	-1,01	-1,01	-1,01	-1,01	-1,01	-1,01

 Tabela 12.10 – Cargas de equilíbrio na empenagem horizontal para vôo com fator de carga limite negativo [kgf]

12.7.1.3 Acréscimo de Carga na Empenagem Horizontal Devido à Manobras

As cargas devido a manobras serão determinadas segundo o requisito FAR-PART 23.423 (d).

$$\Delta \mathbf{P} = \Delta \mathbf{n} \cdot \mathbf{W} \cdot \left[\frac{\mathbf{h} \cdot \overline{\mathbf{c}}}{\mathbf{l}_{t}} - \frac{\mathbf{S}_{EH} \cdot \mathbf{a}_{1}}{\mathbf{S} \cdot \mathbf{a}} \left(1 - \frac{d\varepsilon}{d\alpha} \right) - \rho \cdot \left(\frac{\mathbf{S}_{EH} \cdot \mathbf{a}_{EH} \cdot \mathbf{l}_{t} \cdot \mathbf{g}}{2 \cdot \mathbf{W}} \right) \right]$$

Sendo, lt a distância entre o centro aerodinâmico da aeronave (sem levar em consideração a empenagem horizontal) e o centro aerodinâmico da empenagem horizontal igual a 4.24 m, Δ n o acréscimo do fator de carga devido a manobra é

$$\frac{d\varepsilon}{d\alpha} = 0.4854$$

A Tabela 12.11 apresenta os valores de acréscimo de carga na empenagem devido a manobra, de acordo com a formulação apresentada acima. Nesta tabela os valores do acréscimo do fator de carga foram calculados admitindo-se uma manobra que parte de um fator de carga igual a um até o fator de carga limite em cada velocidade. Deve-se

notar também que para cada condição de carregamento da aeronave, foram admitidas duas condições:

- Manobra positiva
- Manobra negativa

											61				
Vel. [m/s]			20	23	30	35	40	45	50	55	60	66	70	75	80
h=0,27	Positivo	∆P(+)	9,73	9,73	60,83	46,10	28,98	8,94	-2,91	-11,76	-20,73	-7,42	0,47	10,63	9,73
W=563,3Kgf	Invertido	ΔP(-)	9,73	9,73	-53,36	-63,26	12,20	21,07	29,82	38,72	47,73	34,50	26,70	16,77	6,32
h=0,21	Positivo	∆P(+)	-1,14	-1,14	56,12	39,64	20,47	-2,02	-15,39	-25,38	-35,51	-20,50	-11,60	-0,11	-1,14
W=641,3Kgf	Invertido	ΔP(-)	-1,14	-1,14	-71,83	-82,96	1,64	11,65	21,52	31,57	41,75	26,84	18,04	6,84	-5,00
h=0,28	Positivo	∆P(+)	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86
W=678,3Kgf	Invertido	ΔP(-)	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86
h=0,22	Positivo	∆P(+)	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06
W=756,3Kgf	Invertido	ΔP(-)	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06

Tabela 12.11 – Acréscimos de carga devido a manobras [kgf]

12.7.1.4 Carga Total na Empenagem Horizontal

A carga total na empenagem horizontal durante as manobras será então determinada de acordo com o requisito FAR-PART 23.423 (d). Segundo tal item as cargas de manobra devem ser consideradas (i) para manobras que partem da condição de fator de carga um ate a condição de fator de carga limite, como também (ii) para manobras que partem da condição de fator de carga igual a um. Desta forma, no presente caso, para se obter tais resultados deve-se fazer:

 (i) Somatório entre o valor da carga de equilíbrio para vôo com fator de carga unitário e o valor do acréscimo de carga devido à manobra

Diferença entre o valor da carga de equilíbrio para vôo com fator de carga A tabela 12.12 apresenta então os resultados obtidos para o valor da carga total na empenagem horizontal para a condição (i), descrita acima. Já na Tabela 4.6 apresenta então os resultados obtidos para o valor da carga total na empenagem horizontal para a condição (ii), descrita acima.

Uma análise dos resultados de carregamento obtidos para a empenagem horizontal (tabelas 4, 5, 7 e 8) apresenta os seguintes valores com os limites de carga:

- Carga máxima positiva: 257.96kgf a 35m/s com W = 641.3kgf; executando uma manobra que parte do vôo com fator de carga limite até o vôo com fator de carga unitário.
- Carga máxima negativa: -257.46kgf a 35m/s com W = 641.3kgf; executando uma manobra que parte do vôo com fator de carga limite até o vôo com fator de carga unitário.

				ac carg	u uni pu		uiçuo u	e futor	ae earga						
Vel. [m/s]			20	23	30	35	40	45	50	55	60	66	70	75	80
h=0,27	Positivo	∆P(+)	9,73	9,73	60,83	46,10	28,98	8,94	-2,91	-11,76	-20,73	-7,42	0,47	10,63	9,73
W=563,3Kgf	Invertido	∆P(-)	9,73	9,73	-53,36	-63,26	12,20	21,07	29,82	38,72	47,73	34,50	26,70	16,77	6,32
h=0,21	Positivo	∆P(+)	-1,14	-1,14	56,12	39,64	20,47	-2,02	-15,39	-25,38	-35,51	-20,50	-11,60	-0,11	-1,14
W=641,3Kgf	Invertido	∆P(-)	-1,14	-1,14	-71,83	-82,96	1,64	11,65	21,52	31,57	41,75	26,84	18,04	6,84	-5,00
h=0,28	Positivo	∆P(+)	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86
W=678,3Kgf	Invertido	∆P(-)	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86	13,86
h=0,22	Positivo	∆P(+)	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06
W=756,3Kgf	Invertido	ΔP(-)	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06	1,06

Tabela 12.12 – Carga total na empenagem horizontal devido a manobras que partem da condição de fator de carga um para a condição de fator de carga limite

Tabela 12.13 - Carga total na empenagem horizontal devido a manobras que partem da condição de fator

de carga	limite até	a condid	são de j	fator de	carga iim
uc caiga	minute ate	a condity	au uc.	rator uc	carga um

Vel. [m/s]			20	23	30	35	40	45	50	55	60	66	70	75	80
h=0,27	Positivo	∆P(+)	0,00	9,72	-34,57	-13,87	10,14	37,74	49,59	58,44	67,41	54,10	46,21	36,05	36,96
W=563,3Kgf	Invertido	ΔP(-)	-9,81	-12,98	48,31	58,20	-17,26	-26,13	-34,88	-43,77	-52,79	-39,55	-31,75	-21,83	-11,37
h=0,21	Positivo	∆P(+)	0,00	-1,14	-59,20	-43,41	-25,06	-3,45	9,92	19,91	30,04	15,03	6,13	-5,36	-4,33
W=641,3Kgf	Invertido	ΔP(-)	1,15	1,52	72,42	83,55	-1,05	-11,06	-20,93	-30,97	-41,16	-26,24	-17,45	-6,25	5,59
h=0,28	Positivo	∆P(+)	0,00	13,86	23,57	32,08	41,91	52,68	52,68	52,68	52,68	52,68	52,68	52,68	52,68
W=678,3Kgf	Invertido	ΔP(-)	-13,99	-18,51	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07	-21,07
h=0,22	Positivo	∆P(+)	0,00	1,06	1,80	2,44	3,19	4,01	4,01	4,01	4,01	4,01	4,01	4,01	4,01
W=756,3Kgf	Invertido	ΔP(-)	-1,07	-1,41	-1,61	-1,61	-1,61	-1,61	-1,61	-1,61	-1,61	-1,61	-1,61	-1,61	-1,61

12.7.1.5 Carga Devido à Rajada na Empenagem Horizontal

As cargas de rajada na empenagem horizontal serão determinadas de acordo com o item JAR-VLA 425 do requisito JAR-VLA. De acordo com tal item as cargas de rajada na empenagem horizontal devem ser determinadas para a condição de vôo sem flape com velocidades de rajada conforme estabelecidas para a confecção do diagrama V – n.

Tal item apresenta uma formulação para a determinação do acréscimo de carga na empenagem horizontal devido à rajada.

$$\Delta P_U = \frac{k_g \cdot U_{de} \cdot V \cdot a_1 \cdot S_{EH}}{16.3} \left(1 - \frac{d\varepsilon}{d\alpha} \right)$$

Onde U_{de} representa a velocidade de rajada que é constante e igual a 15.24 m/s.

A Tabela 12.14 apresenta então os valores de acréscimo de carga na empenagem horizontal devido à rajada, para vôo sem flape e velocidade de rajada de acordo com o diagrama V-n.

A carga total na empenagem horizontal em rajada será então a adição do acréscimo de carga devido a rajada à carga de equilíbrio na empenagem horizontal para vôo com fator de carga unitário.

Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
h=0,27 W=563,3Kgf	13,66	15,79	20,59	24,09	27,67	31,89	35,47	39,11	42,78	47,26	50,37	54,59	58,40
h=0,21 W=641,3Kgf	13,89	16,06	20,94	24,49	28,13	32,42	36,06	39,77	43,50	48,05	51,21	55,50	59,37
h=0,28 W=678,3Kgf	13,98	16,16	21,08	24,65	28,32	32,63	36,30	40,03	43,79	48,36	51,55	55,87	59,76
h=0,22 W=756,3Kgf	14,15	16,36	21,33	24,94	28,66	33,02	36,74	40,51	44,31	48,94	52,16	56,54	60,48

Tabela 12.14 - Acréscimo de carga na empenagem horizontal devido a rajada

Tabela 12.15 – Carga total na empenagem horizontal durante rajada

				-		-	-						
Vel. [m/s]	20	23	30	35	40	45	50	55	60	66	70	75	80
h=0,27	13 66	15 70	20.50	24.00	27.67	21.90	35 47	20.11	10 79	17 26	50 37	54 50	58 40
W=563,3Kgf	13,00	15,79	20,59	24,09	27,07	51,09	55,47	39,11	42,70	47,20	50,57	54,59	50,40
h=0,21	12 00	16.06	20.04	24.40	20 12	22.42	26.06	20.77	12 50	40.0E	E1 01		50.27
W=641,3Kgf	13,69	10,00	20,94	24,49	20,13	32,42	30,00	39,77	43,50	40,05	51,21	55,50	59,57
h=0,28	40.00	16 16	21.00	24 65	20 22	22.62	26.20	40.02	12 70	10.26	51 55	EE 07	50.76
W=678,3Kgf	13,90	10,10	21,00	24,00	20,32	32,03	30,30	40,03	43,79	40,30	51,55	55,67	59,70
h=0,22	1/ 15	16.26	21 22	24 04	28 66	33 03	36 74	40.51	11 21	19 04	52 16	56 54	60.48
W=756,3Kgf	14,10	15 10,50	21,33	24,94	20,00	33,02	30,74	40,51	44,31	40,94	52,10	50,54	00,40

Uma análise dos valores obtidos para a carga total na empenagem horizontal durante rajada fornece o seguinte valore como limites de operação:

 Carga máxima positiva: 133,31kgf a 85m/s com W = 678,3kgf; sofrendo rajada positiva.

12.7.1.6 Limites de Carga na Empenagem Horizontal

Os limites de carga na empenagem horizontal serão então (analisando-se os itens 3.1.4 e 3.1.5):

- Carga máxima positiva: 83,55kgf a 35m/s com W = 641.3kgf; executando uma manobra que parte do vôo com fator de carga limite até o vôo com fator de carga unitário.
- Carga máxima negativa: -82,96kgf a 100m/s com W = 641.3kgf; executando uma manobra que parte do vôo com fator de carga unitário até o vôo com fator de carga limite.

12.7.1.7 Cargas Assimétricas na Empenagem Horizontal

A distribuição assimétrica de cargas na empenagem horizontal será determinada de acordo com i item FAR-PART 23.427(b) dos requisitos FAR. De acordo com este requisito, a distribuição assimétrica de cargas na empenagem horizontal obedecerá a:

- 1) 100% da carga máxima devido ao vôo simétrico (atuando sobre cada semienvergadura) aplicado no centro de pressão de um lado da empenagem;
- 100 10(n -1)% da carga máxima devido ao vôo simétrico (atuando sobre cada semi-envergadura) aplicado no centro de pressão do outro lado da empenagem, onde é o valor de fator de carga positivo de manobra..

Para o presente caso, ter-se-á duas situações de carregamento máximo, cargas positivas e cargas negativas.

Para as cargas positivas ter-se-á:

$$P' = \frac{83,55}{2} = 41,78 kgf$$

$$P'' = 100 - 10 \cdot (4, 9 - 1) \cdot P = 41,78 kgf$$

Para as cargas negativas ter-se-á:

$$P' = \frac{-82,55}{2} = -41,48kgf$$
$$P'' = 100 - 10 \cdot (4,9-1) \cdot P = -25,30kgf$$

A distribuição assimétrica de carga na empenagem horizontal será conforme as figuras para ambos os casos de carga limites, positiva e negativa, respectivamente.

12.7.1.8 Distribuição de Cargas na Empenagem Horizontal

Como a longarina da empenagem horizontal será simétrica, por simplicidade construtiva, o seu dimensionamento poderá ser feito tomando-se apenas o modulo da maior carga existente nesta empenagem. Deve-se lembrar que é previsto neste projeto a utilização de duas longarinas na empenagem horizontal, ambas suportando os esforços de sustentação da mesma.

12.7.1.8.1 Cargas de Manobra

A localização das longarinas nesta empenagem e a distribuição de cargas de manobras prevista na Tabela 2 do Apêndice A do FAR-PART 23 está apresentada na Figura **12.11**2.11.

Figura 12.11 – Posição e divisão de cargas de manobra nas longarinas da empenagem horizontal Desta forma pode-se calcular as parcelas de carga que cada longarina suporta durante a aplicação de carga simétrica na empenagem horizontal, sendo:

$$\frac{w}{2} \cdot 0, 7c + \frac{w}{2} \cdot 0, 3c = P = 83,55 \text{ kgf}$$
$$\therefore w = 0,1354 \text{ kgf} / mm$$
$$w' = \frac{422,25 \cdot w}{0,7c} = 0,0662 \text{ kgf} / mm$$

Assim:

$$S_1 = \frac{w'}{2} \cdot 422, 25 = 13,97 \, kgf$$
 e

$$S_2 = \frac{(w'+w)}{2} \cdot (0,7c-422,25) + \frac{w}{2} \cdot 0, 3c = 69,58kgf$$

12.7.1.8.2 Cargas de Rajada

A distribuição de cargas de rajada prevista na Tabela 2 do Apêndice A do FAR-PART 23 está apresentada na Figura **12.12**12.12.

Figura 12.12 - Posição e divisão de cargas de rajada nas longarinas da empenagem horizontal

Desta forma pode-se calcular as parcelas de carga que cada longarina suporta durante a aplicação da carga na empenagem horizontal, sendo:

$$\frac{(4w+w)}{2} \cdot \frac{c}{4} + \frac{w}{2} \cdot \frac{3c}{4} = P = 73,63 \text{ kgf}$$

$$\therefore w = 0,0597 \ kgf \ / mm$$

$$w' = \frac{810,93 \cdot w}{\frac{3c}{4}} = 0,0,0523 \, kgf \, / \, mm$$

Assim:

$$S_{1} = \frac{(4w+w)}{2} \cdot \frac{c}{4} + \frac{(w+w')}{2} \cdot 114,789 = 52,44 \, kgf \text{ e}$$
$$S_{2} = \frac{w'}{2} \cdot \left(\frac{3c}{4} - 114,789\right) = 59,606 \, kgf$$

12.7.1.9 Esforços nas Longarinas

Pelos itens acima, observa-se que a longarina traseira deverá ser dimensionada pelas cargas de manobra e a longarina dianteira pelas cargas de rajada.

A distribuição de sustentação e esforços, ao longo da envergadura da empenagem horizontal, calculada pelo método de Stender, para a longarina dianteira é apresentada na Tabela 12.16.

Estação	Estação	u de elínee	Corda da	Corda da	Corda da	Área da	Sustent.	Cortante	Fletor
[m]	Forças [m]	y da elipse	elípse [m]	real [m]	Stender [m]	Stender [m2]	[kgf]	[kgf]	[kgf.m]
ponta	1,79	0,0000	0,0000	0,5094	0,0000	0,0000	0,0000	0,0000	0,000
1	1,73	0,1214	0,2428	0,5251	0,3571	0,0425	3,9096	1,6802	0,000
2	1,61	0,2067	0,4134	0,5565	0,4796	0,0571	5,2514	3,9370	0,200
3	1,49	0,2621	0,5242	0,5879	0,5551	0,0661	6,0783	6,5491	0,668
4	1,37	0,3044	0,6089	0,6193	0,6141	0,0731	6,7234	9,4385	1,448
5	1,25	0,3386	0,6773	0,6507	0,6638	0,0790	7,2683	12,5621	2,571
6	1,13	0,3670	0,7339	0,6821	0,7075	0,0842	7,7466	15,8912	4,066
7	1,01	0,3907	0,7814	0,7135	0,7467	0,0889	8,1751	19,4045	5,957
8	0,89	0,4107	0,8213	0,7449	0,7821	0,0931	8,5637	23,0848	8,266
9	0,77	0,4274	0,8547	0,7762	0,8145	0,0969	8,9182	26,9175	11,013
10	0,65	0,4412	0,8823	0,8076	0,8442	0,1005	9,2426	30,8895	14,216
11	0,54	0,4523	0,9047	0,8390	0,8712	0,1037	9,5392	34,9890	17,892
12	0,42	0,4611	0,9222	0,8704	0,8959	0,1066	9,8095	39,2047	22,056
13	0,30	0,4676	0,9351	0,9018	0,9183	0,1093	10,0545	43,5256	26,721
14	0,18	0,4718	0,9436	0,9332	0,9384	0,1117	10,2745	47,9411	31,901
15	0,06	0,4739	0,9478	0,9646	0,9562	0,1138	10,4692	52,4403	37,606
raíz	0,00	0,4742	0,9484	0,9803	0,9642	0,1147	0,0000	52,4403	43,578

 Tabela 12.16 – Distribuição de sustentação e esforços para a longarina dianteira da empenagem

horizontal

Figura 12.13 - Distribuição de esforços na longarina dianteira da empenagem horizontal

Analogamente, para a longarina traseira, é apresentado, na Tabela 12.17 e na Figura 12.14, a sua distribuição de sustentação e esforços.

Estação	Estação	y da	Corda da	Corda da	Corda da	Área da	Sustent.	Cortante	Fletor
[m]	Forças [m]	elípse	elípse [m]	real [m]	Stender [m]	Stender [m2]	[kgf]	[kgf]	[kgf.m]
ponta	1,79	0,0000	0,0000	0,5094	0,0000	0,0000	0,0000	0,0000	0,000
1	1,73	0,1214	0,2428	0,5251	0,3571	0,0425	3,9096	2,2294	0,000
2	1,61	0,2067	0,4134	0,5565	0,4796	0,0571	5,2514	5,2241	0,265
3	1,49	0,2621	0,5242	0,5879	0,5551	0,0661	6,0783	8,6902	0,887
4	1,37	0,3044	0,6089	0,6193	0,6141	0,0731	6,7234	12,5242	1,921
5	1,25	0,3386	0,6773	0,6507	0,6638	0,0790	7,2683	16,6689	3,411
6	1,13	0,3670	0,7339	0,6821	0,7075	0,0842	7,7466	21,0864	5,395
7	1,01	0,3907	0,7814	0,7135	0,7467	0,0889	8,1751	25,7482	7,904
8	0,89	0,4107	0,8213	0,7449	0,7821	0,0931	8,5637	30,6317	10,968
9	0,77	0,4274	0,8547	0,7762	0,8145	0,0969	8,9182	35,7173	14,614
10	0,65	0,4412	0,8823	0,8076	0,8442	0,1005	9,2426	40,9878	18,864
11	0,54	0,4523	0,9047	0,8390	0,8712	0,1037	9,5392	46,4275	23,741
12	0,42	0,4611	0,9222	0,8704	0,8959	0,1066	9,8095	52,0214	29,266
13	0,30	0,4676	0,9351	0,9018	0,9183	0,1093	10,0545	57,7549	35,457
14	0,18	0,4718	0,9436	0,9332	0,9384	0,1117	10,2745	63,6139	42,330
15	0,06	0,4739	0,9478	0,9646	0,9562	0,1138	10,4692	69,5840	49,900
raíz	0,00	0,4742	0,9484	0,9803	0,9642	0,1147	0,0000	69,5840	57,825

Tabela 12.17 - Distribuição de sustentação e esforços para a longarina traseira da empenagem horizontal

Figura 12.14 - Distribuição de esforços na longarina traseira da empenagem horizontal

12.7.1.10 Cargas nos Apoios da Empenagem Horizontal

As reações nos apoios da empenagem horizontal são de extrema importância para o cálculo das ferragens de fixação da empenagem na fuselagem, bem como para o cálculo dos efeitos destas cargas na fuselagem. Admitindo a distribuição de carregamento e a distribuição das longarinas apresentada na **Erro! A origem da referência não foi encontrada.** 12.15 (deve-se notar que a distância entre longarinas neste caso representa a distância entre os apoios da empenagem horizontal na estrutura da fuselagem), pode-se escrever:

$$S_1 = \frac{a \cdot w}{2} \quad e \quad S_2 = \frac{b \cdot w}{2}$$
$$S_1 + S_2 = P$$

12.7.1.10.1 Condição de Carregamento Positivo Simétrico

Para a condição de carregamento positivo máximo na empenagem horizontal,

$$S_1 = \frac{0, 7c \cdot w}{2} \quad \text{e} \quad S_2 = \frac{0, 3c \cdot w}{2}$$

$$S_1 + S_2 = 83,55 \text{ kgf}$$

A solução desse sistema linear fornece:

 $S_1 = 58,49 \text{kgf}$ $S_2 = 25,07 \text{ kgf}$ w = 0,170 kgf/mm

Por equilíbrio de forças:

$$\Sigma F = R_F + R_T + S_1 + S_2 = 0$$

$$\therefore R_F + R_T = -S_1 - S_2$$

$$\Sigma F = R_F + R_T = -83.55 \text{ kgf}$$

Por equilíbrio de momento tem-se:

$$R_{\rm F} = -76,83 \text{ kgf}$$

 $R_{\rm T} = -6,72 \text{ kgf}$

12.7.1.10.2 Condição de Carregamento Negativo Simétrico

Para a condição de carregamento negativo máximo, tem-se, de forma análoga ao item anterior:

 $S_1 + S_2 = -82,96 \text{ kgf}$ $R_F = -173,29 \text{ kgf}$ $R_T = 90,33 \text{ kgf}$

12.7.1.10.3 Condição de Carregamento Positivo Assimétrico

Para as condições assimétricas de carregamento da empenagem horizontal deve-se efetuar também o equilíbrio de momentos em torno do eixo longitudinal da aeronave.

12.7.1.11 Carga Positiva na Longarina Dianteira

Para o cálculo das reações nos apoios da empenagem com a fuselagem, devido as cargas assimétricas será aplicada 100% da carga máxima no lado esquerdo e 61% dessa mesma carga do lado direito. Sabendo que a distância entre as fixações dianteiras da empenagem horizontal e a linha de centro da aeronave é de 115mm e que a carga e de acordo com os cálculos de sustentação apresentados na seção 4.1.9 tem-se, fazendo momento nulo no apoio esquerdo tem-se:

	Estação	Sute Sim	Sust. Ass	Le 100%	Me 100%	Le 72%	Me 72%
	[m]	[kgf]	[kgf]	[m]	[kgf.m]	[m]	[kgf.m]
ponta	1,79	0,0000	0,0000	1,90	0,0000	-1,67	0,0000
	1,73	3,9096	2,3849	1,84	9,3239	-1,61	-3,8408
	1,61	5,2514	3,2034	1,72	16,8224	-1,49	-4,7778
	1,49	6,0783	3,7077	1,60	22,5367	-1,37	-5,0889
	1,37	6,7234	4,1013	1,48	27,5743	-1,25	-5,1409
	1,25	7,2683	4,4337	1,36	32,2255	-1,13	-5,0300
	1,13	7,7466	4,7254	1,25	36,6059	-1,02	-4,7987
	1,01	8,1751	4,9868	1,13	40,7681	-0,90	-4,4707
	0,89	8,5637	5,2239	1,01	44,7356	-0,78	-4,0615
	0,77	8,9182	5,4401	0,89	48,5164	-0,66	-3,5823
	0,65	9,2426	5,6380	0,77	52,1095	-0,54	-3,0417
	0,54	9,5392	5,8189	0,65	55,5075	-0,42	-2,4468
	0,42	9,8095	5,9838	0,53	58,6986	-0,30	-1,8041
	0,30	10,0545	6,1333	0,41	61,6672	-0,18	-1,1193
	0,18	10,2745	6,2674	0,29	64,3947	-0,06	-0,3980
	0,06	10,4692	6,3862	0,17	66,8591	0,06	0,3544
raíz	0,00	0,0000	0,0000	0,12	0,0000	0,12	0,0000
somatório		122,0243	74,4348		638,3453		-49,2472

Tabela 12.18 – Momento na longarina dianteira para carregamento assimétrico positivo

Então as reações na fuselagem devido a empenagem é de:

 $R_d = -2561 \text{ kgf}$ $R_E = 2365 \text{ kgf}$

12.7.1.12 Carga Positiva na Longarina Traseira

De forma, análoga, são feitos os mesmos cálculos para longarina traseira, sabendo que a distância entre as fixações traseiras da empenagem horizontal e a linha de centro da aeronave é de 72mm, tem-se:

Sute Sim Sust. Ass Le 100% Me 100% Le 72% Me 72% Estação [m] [kgf] [kgf] [m] [kgf.m] [m] [kgf.m] 0,00 0,0000 0,0000 0,12 0,0000 0,12 0,0000 ponta

 Tabela 12.19 – Momento na longarina traseira para carregamento assimétrico positivo

raíz	0,06	10,4692	6,3862	0,17	66,8591	0,06	0,3544
	0,18	10,2745	6,2674	0,29	64,3947	-0,06	-0,3980
	0,30	10,0545	6,1333	0,41	61,6672	-0,18	-1,1193
	0,42	9,8095	5,9838	0,53	58,6986	-0,30	-1,8041
	0,54	9,5392	5,8189	0,65	55,5075	-0,42	-2,4468
	0,65	9,2426	5,6380	0,77	52,1095	-0,54	-3,0417
	0,77	8,9182	5,4401	0,89	48,5164	-0,66	-3,5823
	0,89	8,5637	5,2239	1,01	44,7356	-0,78	-4,0615
	1,01	8,1751	4,9868	1,13	40,7681	-0,90	-4,4707
	1,13	7,7466	4,7254	1,25	36,6059	-1,02	-4,7987
	1,25	7,2683	4,4337	1,36	32,2255	-1,13	-5,0300
	1,37	6,7234	4,1013	1,48	27,5743	-1,25	-5,1409
	1,49	6,0783	3,7077	1,60	22,5367	-1,37	-5,0889
	1,61	5,2514	3,2034	1,72	16,8224	-1,49	-4,7778
	1,73	3,9096	2,3849	1,84	9,3239	-1,61	-3,8408

Então as reações na fuselagem devido a empenagem é de:

 $R_d = -4091 \text{ kgf}$

 $R_E = 3839 \text{ kgf}$

12.7.1.13 Carga Negativa na Longarina Dianteira

Para o cálculo das reações nos apoios da empenagem com a fuselagem, devido as cargas assimétricas será aplicada 100% da carga máxima no lado esquerdo e 61% dessa mesma carga do lado direito, mas dessa vez com o carregamento para baixo. Sabendo que a distância entre as fixações dianteiras da empenagem horizontal e a linha de centro da aeronave é de 115mm e que a carga e de acordo com os cálculos de sustentação apresentados na seção 4.1.9 tem-se, fazendo momento nulo no apoio esquerdo tem-se:

Tabela 12.20 – Momento na longarina dianteira para carregamento assimétrico negativo

Estação	Sute Sim	Sust. Ass	Le 100%	Me 100%	Le 72%	Me 72%
[m]	[kgf]	[kgf]	[m]	[kgf.m]	[m]	[kgf.m]

ponta	0,00	0,0000	0,0000	0,12	0,0000	0,12	0,0000
	1,73	3,9096	2,3849	1,84	9,3239	-1,61	-3,8408
	1,61	5,2514	3,2034	1,72	16,8224	-1,49	-4,7778
	1,49	6,0783	3,7077	1,60	22,5367	-1,37	-5,0889
	1,37	6,7234	4,1013	1,48	27,5743	-1,25	-5,1409
	1,25	7,2683	4,4337	1,36	32,2255	-1,13	-5,0300
	1,13	7,7466	4,7254	1,25	36,6059	-1,02	-4,7987
	1,01	8,1751	4,9868	1,13	40,7681	-0,90	-4,4707
	0,89	8,5637	5,2239	1,01	44,7356	-0,78	-4,0615
	0,77	8,9182	5,4401	0,89	48,5164	-0,66	-3,5823
	0,65	9,2426	5,6380	0,77	52,1095	-0,54	-3,0417
	0,54	9,5392	5,8189	0,65	55,5075	-0,42	-2,4468
	0,42	9,8095	5,9838	0,53	58,6986	-0,30	-1,8041
	0,30	10,0545	6,1333	0,41	61,6672	-0,18	-1,1193
	0,18	10,2745	6,2674	0,29	64,3947	-0,06	-0,3980
	0,06	10,4692	6,3862	0,17	66,8591	0,06	0,3544
raíz	0,00	0,0000	0,0000	0,12	0,0000	0,12	0,0000
somatório		122,0243	74,4348		638,3453		-49,2472

Então as reações na fuselagem devido a empenagem é de:

R_d = 2561 kgf

 $R_E = -2365 \text{ kgf}$

12.7.1.14 Carga Positiva na Longarina Traseira

De forma, análoga, são feitos os mesmos cálculos para longarina traseira, sabendo que a distância entre as fixações traseiras da empenagem horizontal e a linha de centro da aeronave é de 72mm, tem-se:

Tabela 12.21 – Momento na longarina traseira para carregamento assimétrico negativo

	Estação	Sute Sim	Sust. Ass	Le 100%	Me 100%	Le 72%	Me 72%
	[m]	[kgf]	[kgf]	[m]	[kgf.m]	[m]	[kgf.m]
ponta	0,00	0,0000	0,0000	0,12	0,0000	0,12	0,0000
	1,73	3,9096	2,3849	1,84	9,3239	-1,61	-3,8408
	1,61	5,2514	3,2034	1,72	16,8224	-1,49	-4,7778
	1,49	6,0783	3,7077	1,60	22,5367	-1,37	-5,0889

	1,37	6,7234	4,1013	1,48	27,5743	-1,25	-5,1409
	1,25	7,2683	4,4337	1,36	32,2255	-1,13	-5,0300
	1,13	7,7466	4,7254	1,25	36,6059	-1,02	-4,7987
	1,01	8,1751	4,9868	1,13	40,7681	-0,90	-4,4707
	0,89	8,5637	5,2239	1,01	44,7356	-0,78	-4,0615
	0,77	8,9182	5,4401	0,89	48,5164	-0,66	-3,5823
	0,65	9,2426	5,6380	0,77	52,1095	-0,54	-3,0417
	0,54	9,5392	5,8189	0,65	55,5075	-0,42	-2,4468
	0,42	9,8095	5,9838	0,53	58,6986	-0,30	-1,8041
	0,30	10,0545	6,1333	0,41	61,6672	-0,18	-1,1193
	0,18	10,2745	6,2674	0,29	64,3947	-0,06	-0,3980
	0,06	10,4692	6,3862	0,17	66,8591	0,06	0,3544
raíz	0,00	0,0000	0,0000	0,12	0,0000	0,12	0,0000
somatório		122,0243	74,4348		638,3453		-49,2472

Então as reações na fuselagem devido a empenagem é de:

 $R_d = 4091 \text{ kgf}$ $R_E = -3839 \text{ kgf}$

12.7.2 Cargas na Empenagem Vertical

12.7.2.1 Cargas de Manobra na Empenagem Vertical

De acordo com o parágrafo FAR-PART 23.441 e considerando-se a Figura A5 do Apêndice A deste mesmo regulamento, a carga média de manobra pode ser calculada através da seguinte equação:

$$P = S_{EV} \cdot 0.534 \cdot n \cdot \frac{W}{S}$$

Onde n representa o fator de carga limite.

A área da empenagem vertical a ser considerada para os cálculos de cargas será 1,03m².

Sendo a área da empenagem vertical igual a $1.034m^2$:

$$\frac{W}{S} = \frac{750}{12,96} = 57,87 \, kgf \, / \, m^2$$
$$P = 116,47 kgf$$

12.7.2.2 Cargas de Rajada na Empenagem Vertical

As cargas de rajada na empenagem vertical devem ser determinadas de acordo com o parágrafo FAR-PART 23.443. Este prevê que tais cargas devem ser calculadas com a aeronave em vôo não acelerado na velocidade de cruzeiro (Vc) sofrendo uma rajada de 15.24 m/s (FAR-PART 23.333(c)).

A carga devido a rajada na empenagem vertical será obtida pelas seguintes equações (FAR-PART 23.443(b)).

$$P_{\text{UEV}} = \frac{k_{\text{gt}} \cdot U_{\text{de}} \cdot V \cdot (a_1)_{\text{EV}} \cdot S_{\text{EV}}}{16.3}$$

Sendo:

$$k_{gt} = \frac{0.88 \cdot \mu_{gt}}{5.3 + \mu_{gt}}$$
, o fator de alívio de rajada lateral

$$\mu_{gt} = \frac{2 \cdot M}{\rho \cdot \overline{c}_{EV} \cdot g \cdot (a_1)_{EV} \cdot S_{EV}} \cdot \left(\frac{K}{l_{EV}}\right)^2$$

K = raio de giração de guinada da aeronave

 l_{EV} = distância entre o centro de gravidade da aeronave e o centro aerodinâmico da empenagem vertical

M = massa da aeronave

O raio de giração da aeronave é igual a raiz quadrada da razão entre o momento de inércia e a massa da aeronave. Para o presente projeto, tal grandeza é igual a 1.86m. Então:

$$\mu_{gt} = \frac{2 \cdot 750}{1,225 \cdot 0,836 \cdot 9,81 \cdot 3,8 \cdot 1,03} \cdot \left(\frac{1,86}{4,202}\right)^2 = 194,49$$

$$k_{gt} = \frac{0,88 \cdot 194,49}{5,3 + 194,49} = 0,1660$$

$$P_{UEV} = \frac{0,1660 \cdot 15.24 \cdot 59,57 \cdot 3,8 \cdot 1,03}{16,3} = 4193 lbf$$

12.7.2.3 Aplicação das Cargas na Empenagem Vertical

De acordo com os itens acima, a empenagem vertical deverá ser então dimensionada para uma carga correspondente ao valor determinado para a sua carga de manobra. Considerando que a posição do centro de pressão da empenagem vertical é bem próximo à posição da corda média aerodinâmica da mesma, tem-se que as cargas na empenagem vertical serão aplicadas.

12.7.2.4 Distribuição de Cargas na Empenagem Vertical

A distribuição de cargas e esforços sobre a empenagem vertical, calculada pelo método de Stender, de acordo com forma em planta.

Estação [m]	Estação Forças [m]	y da elípse	Corda da elípse [m]	Corda da real [m]	Corda da Stender [m]	Área da Stender [m2]	Sustent. [kgf]	Cortante [kgf]	Fletor [kgf.m]
raíz	0,74	0,00	0,00	0,58	0,00	0,00	0,00	0,00	0,000
1	0,72	0,15	0,30	0,61	0,43	0,02	45,36	45,36	0,000
2	0,67	0,25	0,50	0,67	0,58	0,03	61,81	107,17	2,245
3	0,62	0,32	0,64	0,72	0,68	0,03	72,44	179,61	7,550
4	0,57	0,37	0,74	0,78	0,76	0,04	81,02	260,63	16,441
5	0,52	0,41	0,83	0,83	0,83	0,04	88,44	349,07	29,342
6	0,47	0,45	0,90	0,89	0,89	0,04	95,08	444,15	46,621
7	0,42	0,48	0,95	0,94	0,95	0,05	101,13	545,28	68,607
8	0,37	0,50	1,00	1,00	1,00	0,05	106,68	651,96	95,598
9	0,32	0,52	1,04	1,05	1,05	0,05	111,80	763,76	127,870
10	0,27	0,54	1,08	1,11	1,09	0,05	116,54	880,30	165,676
11	0,22	0,55	1,10	1,16	1,13	0,06	120,92	1001,23	209,251
12	0,17	0,56	1,13	1,22	1,17	0,06	124,96	1126,19	258,812
13	0,12	0,57	1,14	1,27	1,21	0,06	128,66	1254,84	314,558
14	0,07	0,58	1,15	1,33	1,24	0,06	132,02	1386,86	376,673

 Tabela 12.22 - Distribuição de sustentação e esforços para a longarina da empenagem vertical

15	0,02	0,58	1,16	1,38	1,27	0,06	135,04	1521,90	445,322
ponta	0,00	0,58	1,16	1,41	1,28	0,06	0,00	1521,90	517,314

Figura 12.16 – Distribuição de esforços na empenagem vertical

12.7.2.5 Reações de Apoio da Empenagem Vertical

De acordo com a aplicação das cargas, pode-se calcular as reações no apoios superior e inferior (da aeronave) da seguinte forma:

$$M_{raiz} + R_I \cdot 395 = 0$$

$$R_{S} + R_{I} = 1521,9 kgf$$

sendo M_{raiz} o momento produzido pelo carregamento distribuído na raiz.

$$\therefore R_1 = 3695,102 kgf e R_s = -2173,2 kgf$$

12.8 Cargas no Berço do Motor

As cargas no motor deverão ser determinadas em conformidade com os requisites apresentados nos parágrafos FAR-PART 23.361 e 23.363, se resumindo em:

- Cargas verticais combinadas ao torque do motor
- Cargas de inércia lateral

No presente projeto utilizar-se-á o motor Textron Lycoming O235L, quatro cilindros planos com 118 HP a 2800rpm.

12.8.1 Cargas Verticais Combinadas ao Torque do Motor

O parágrafo FAR-PART 23.361 determina que o berço do motor deve ser capaz de suportar duas combinações de carregamento.

i) Torque máximo do motor em regime de decolagem mais 75% das cargas verticais de inércia com fator de carga correspondente ao ponto de manobra do diagrama V-n (FAR-PART 23.361 (a)-1).

ii) Torque limite do motor em limite de potencia máxima continua mais as cargas verticais de inércia com fator de carga correspondente ao ponto de manobra do diagrama V-n (JAR-VLA 361 (a)-2).

Sendo que o torque limite do motor na condição (ii) corresponde ao torque médio do motor para máxima potência continua multiplicado por um fator que depende do número de ciclos e do número de cilindros do motor.

12.8.1.1 Torque do Motor

O torque Maximo de decolagem será o torque máximo da aeronave vezes a relação de redução do redutor. Para o presente caso, sem redutor, a relação de transmissão será de 1:1. Desta forma:

$$T_{\max DEC} = 30.60 kgf \cdot m \cdot 1 = 30.60 kgf \cdot m$$

12.8.1.2 Carga Vertical de Inercia no Pontode Manobra do Diagrama V-N

No ponto de manobra do diagrama V-n os fatores de carga limite são +4.9 e -2.9. O peso do motor Textron Lycoming O235L completo é de 104.50kgf, o peso estimado para o berço do motor é de 1.00kgf, o peso do conjunto hélice mais spiner previsto é de 7.90kgf, o peso estimado do capô do motor é de 5.50kgf e o sistema de óleo é de 3.40kgf. Desta forma, as cargas verticais ao ponto de manobra do diagrama V-n serão:

e

$$P = (50+1.00+7.90+5.50+3.40) \times (-2.9) = -354.67 \text{kgf}$$

12.8.1.3 Torque Limite Do Motor

O torque médio do motor Textron Lycoming O235L para operação com potência máxima contínua é de 30.60kgf.m. 0 parágrafo FAR-PART 23.361 (c)-3 determina que para motores de quatro cilindros o fator de torque deve ser igual a 2. Desta forma o torque limite do motor Textron Lycoming O235L será:

$$T_{\rm lim} = 30.60 kgf \cdot m \cdot 1 \cdot 2 = 61.20 kgf \cdot m$$

Assim, quanto ao parágrafo FAR-PART 23.361 as cargas no berço do motor se resumem na tabela.

Condição	Carga Vertical	Torque
Torque de Decolagem + 75%	75%P ⁺ = 449.45kgf	
carga vertical limite	75%P ⁻ = -266.00kgf	T _{lim} = 61.2kgf.m
Torque limite do motor +	P ⁺ = 599.27kgf	
carga vertical limite	P ⁺ = -354.67kgf	T _{lim} = 61.2kgf.m

 Tabela 12.23 - Cargas verticais combinadas com torque no berço do motor

12.8.1.4 Reações de Apoio na Fuselagem

As reações de apoio do berço do motor na fuselagem são de extrema importância para o dimensionamento da estrutura da fuselagem.

As reações de apoio devidas as carga verticais de inércia, apresentadas na Figura 12.17, podem ser calculadas como:

 $599.27 \cdot 636 = R_{HI} \cdot (391 + 64)$

 $\therefore R_{HI} = 774.67 kgf \therefore R_{HS} = -837.66 kgf$

$$R_{VS} = R_{VI} = 299.64 kgf$$

Figura 12.17 - Reações verticais do berço do motor na fuselagem

As reações de toque do motor são apresentadas na Figura 12.18.

Figura 12.18 - Reações de toque do berço do motor na fuselagem

Estas reações de torque devem produzir um torque equivalente igual ao torque limite do motor calculado no item anterior.

$$2 \cdot R_s \cdot \sqrt{59^2 + 416^2} + 2 \cdot R_I \cdot \sqrt{397^2 + 416^2} = 61.20 \times 10^3 \, kgf \cdot mm$$

Além disto deve haver equilíbrio de forças laterais:

$$2 \cdot R_s \cdot \frac{59}{\sqrt{59^2 + 416^2}} - 2 \cdot R_I \cdot \frac{416}{\sqrt{397^2 + 416^2}} = 0$$

Resolvendo o sistema acima, tem-se:

$$R_s = 60.52 kgf \qquad e \qquad R_I = 15.44 kgf$$

Estas cargas devem ser decompostas em cargas verticais e laterais, sendo:

$$R_{LS} = 60.52 kgf \cdot \frac{59}{\sqrt{59^2 + 416^2}} = 8.50 kgf$$

$$R_{VS} = 60.52kgf \cdot \frac{416}{\sqrt{59^2 + 416^2}} = 59.92kgf$$

$$R_{LI} = 15.44 kgf \cdot \frac{416}{\sqrt{416^2 + 397^2}} = 8.50 kgf$$

$$R_{VI} = 15.44 kgf \cdot \frac{416}{\sqrt{416^2 + 397^2}} = 12.18 kgf$$

Sendo as direções de aplicação em cada ponto de atracamento do berço do motor com a fuselagem devem ser observadas de acordo com a Figura 12.18.

Deve-se lembrar que as cargas verticais e de torque no motor devem ser aplicadas simultaneamente na fuselagem.

12.8.2 Cargas Laterais no Berço do Motor

As cargas laterais no berço do motor são determinadas de acordo com o parágrafo FAR-PART 23.363. Tal parágrafo determina que uma carga de inércia lateral, com fator de carga de no mínimo 1.33, deve ser aplicada lateralmente no berço do motor independentes de outras condições de operação. Desta forma, a carga lateral a ser aplicada no berço do motor, adotando um fator de carga igual à 2 para o presente caso será:

$$P = (104.50+1.00+7.90+5.50+3.40) \times 2 = 244.60 \text{kgf}$$

12.8.2.1 Reações de Apoio na Fuselagem

As reações laterais de apoio do berço do motor na fuselagem são apresentadas na Figura 25.

Figura 12.19 - Reações laterais do berço do motor na fuselagem

Sendo:

$$244.60 \cdot 636 = R_{HD} \cdot 547$$

 $\therefore R_{HD} = 284.40 kgf \therefore R_{HE} = -284.40 kgf$
 $R_L = 122.30 kgf$

12.9 Cargas na Fuselagem

A fuselagem será dividida em dois segmentos, a porção anterior e posterior, sendo esta divisão feita nas cavernas de ligação da asa com a fuselagem.

Os carregamentos aplicados a cada porção descrita serão compostos pela combinação dos carregamentos já determinados nas partes anteriores a esta.

12.9.1 Cargas na porção anterior da fuselagem

As cargas na porção anterior da fuselagem se resumem a:

- Cargas verticais de inércia devido ao peso próprio da fuselagem e aos diversos componentes atracados à mesma, combinadas com as cargas de torque do motor;
- Cargas laterais transmitidas pelo berço do motor.

12.9.1.1 Cargas Verticais de Inércia

As cargas de inércia da fuselagem serão determinadas considerando-se a mesma distribuição dos componentes apresentada nos **Cálculos de Peso e Centragem**. A Figura 26 apresenta as partes e componentes atracados a fuselagem.

Figura 12.20 - Componentes da fuselagem

A Tabela 12.24 apresenta o peso e a posição de cada componente em relação a caverna anterior do atracamento entre a asa e a fuselagem. Estas massas devem ser aplicadas na fuselagem com fatores de carga de 4.9g e -2.9g.

Posição	Descrição	Braço	Peso	Peso x Fator de carga
7	Triquilha	1,14	12,40	60,76
9	Bateria e caixa	1,05	12,00	58,80
12	Controles	0,77	1,50	7,35
13	Radio	0,42	2,70	13,23
14	Equipamentos	0,37	33,00	161,70
17	Linhas	0,30	2,00	9,80

Tabela 12.24 - Massas concentradas na porção anterior da fuselagem

Posição	Descrição	Braço	Peso	Peso x Fator de carga
7	Triquilha	1,14	12,40	-35,96
9	Bateria e caixa	1,05	12,00	-34,80

12	Controles	0,77	1,50	-4,35
13	Radio	0,42	2,70	-7,83
14	Equipamentos	0,37	33,00	-95,70
17	Linhas	0,30	2,00	-5,80

Deve-se notar que, na realidade, o único componente que realmente deveria provocar uma carga considerável para a analise estrutural seria o tanque de combustível cheio. Como o mesmo não se encontra acoplado a fuselagem e sim nas asas não consideraremos a efeito de análise os esforços provindo da inércia do tanque cheio.

A inércia do motor e seus acessórios já foram calculados no item anterior e deve ser aplicada na fuselagem conforme apresentado na Figura 23. Juntamente com estas cargas, seguindo especificação do regulamento (FAR-PART 23.361) devem ser aplicadas as cargas de torque do motor, segundo a Figura 12.20.

A inércia da massa da fuselagem também deve ser levada em consideração na análise estrutural desta porção da fuselagem.

12.9.1.2 Cargas Laterais Transmitidas pelo Berço do Motor

As cargas laterais aplicadas na fuselagem são aquelas previstas pelo regulamento FAR-PART 23.363, calculadas no item anterior deste capitulo. Sua aplicação na fuselagem deve ser feita de acordo com a Figura 12.20

12.9.2 Cargas na Porção Posterior da Fuselagem

As cargas na porção posterior da fuselagem se resumem a:

- Cargas verticais de inércia devido ao peso da fuselagem e aos diversos componentes atracados a mesma adicionada da carga de empenagem durante manobra simétrica com o mesmo fator de carga utilizado para as cargas de inércia;
- Cargas devido às cargas na bequilha;
- Cargas devido as cargas na empenagem horizontal;

- Cargas devido as cargas na empenagem vertical;
- Cargas combinadas nas empenagens.

12.9.2.1 Cargas Verticais de Inércia

As cargas de inércia na porção posterior da fuselagem serão determinadas semelhantemente ao caso da porção anterior da fuselagem. A Figura 12.21 apresenta as partes e componentes atracados à fuselagem.

A Tabela 12.25 apresenta o peso e a posição de cada componente em relação a caverna anterior do atracamento entre a asa e a fuselagem. Deve-se notar que, neste caso, para o cálculo destes momentos deve-se considerar as manobras positivas e negativas (n = +4.9 e n=-2.9).

Posição	Descrição	Braço[m]	Peso[kgf]	Peso x Fator de carga
29a	Pilotos+cintos	0,16	172,00	842,80
21	Canopy	0,55	6,00	29,40
27	Empenagem Vertical	4,64	3,80	18,62
28	Empenagem Horizontal	4,31	7,40	36,26
7	Bequilha	4,86	4,90	24,01
	Total		194,10	951,09

Tabela 12.25 - Momentos na porção posterior da fuselagem

Posição	Descrição	Braço[m]	Peso[kgf]	Peso x Fator de carga
29a	Pilotos+cintos	0,16	172,00	-498,80
21	Canopy	0,55	6,00	-17,40
27	Empenagem Vertical	4,64	3,80	-11,02
28	Empenagem Horizontal	4,31	7,40	-21,46
7	Bequilha	4,86	4,90	-14,21
	Total		194,10	-562,89

A aplicação destas cargas na fuselagem deve ser feita conforme apresentado na Figura 12.21.

Figura 12.21 - Cargas de inércia na parte posterior da fuselagem

A inércia da massa da fuselagem também deve ser levada em consideração na análise estrutural desta porção da fuselagem.

Em conjunto com estas cargas devem ser aplicadas as cargas na empenagem horizontal quando a aeronave estiver executando manobras com os fatores de carga equivalentes. Do item 1.2 da Parte II deste capítulo tem-se que as cargas limites na empenagem horizontal executando manobras com fatores de carga máxima é de 83,55kgf para manobras positivas e de -82,96kgf para manobras negativas. Assim, para se calcular as reações nos apoios da empenagem horizontal, podem-se fazer:

$$S_1 = \frac{547.05}{2}w = 273,53 \cdot w$$
 e $S_2 = \frac{234.45}{2}w = 117,23 \cdot w$

$$S_1 + S_2 = 83,55 kgf$$

Figura 12.22 - Distribuição de carga para calculo das reações nos apoios a empenagem horizontal

A solução desse sistema linear fornece:

$$S_1 = 58,49kgf$$
 $S_2 = 25,07kgf$ $w = 0,2138kgf / mm$

Por equilíbrio de forças:

$$\sum F = R_F + R_T + S_1 + S_2 = 0$$

$$\therefore R_F + R_T = S_1 - S_2$$

$$\sum F = R_F + R_T = -83.55 kgf$$

Por equilíbrio de momento:

$$\sum M = 369.05 \cdot R_F + 312.2 \cdot R_T + S_1 \cdot 364.70 + S_2 \cdot 625.20 = 0$$

$$\sum M = 369.05 \cdot R_F + 312.2 \cdot R_T + 180.57 \cdot 364.70 + 77.39 \cdot 625.20 = 0$$

$$\sum M = 369.05 \cdot R_F + 321.2 \cdot R_T = -37000.12 kgf.mm$$

Logo, tem-se o seguinte sistema linear:

$$R_F + R_T = -83,55 kgf$$

$$369.05 \cdot R_F + 321,2 \cdot R_T = -37000.12 kgf.mm$$

Que resolvido fornece:

$$R_F = 192,01 kgf$$
$$R_T = -108.46 kgf$$

Estas cargas devem ser aplicadas nos pontos de fixação da empenagem horizontal, em conjunto com as cargas de inércia devido ao peso das empenagens.

12.9.2.2 Cargas Verticais Aplicadas na Bequilha

A carga máxima a ser aplicada na bequilha da presente aeronave e igual a 110.54kgf (ver item 2.2(c) da parte 3 deste capitulo), sendo a sua solicitação a fuselagem bem inferior em relação aos demais itens.

12.9.2.3 Cargas Devido as Cargas na Empenagem Horizontal

As cargas na fuselagem devidas às cargas na empenagem horizontal foram calculadas no item 1.9 da Parte II. Devem ser analisadas as cargas simétricas e assimétricas positivas e negativas.

12.9.2.4 Cargas Devido as Cargas na Empenagem Vertical

As cargas na fuselagem devidas à carga na empenagem vertical foram calculadas no item 2.5 da Parte II deste capitulo e devem ser aplicadas de acordo com a Figura 12.23. Devem ser analisadas estas cargas atuando nas duas direções.

12.9.2.5 Cargas Combinadas nas Empenagens

O regulamento FAR-PART 23 não apresenta requisites explícitos quanto às cargas combinadas na empenagem horizontal. Entretanto será utilizado o parágrafo 447 do requisite JAR-VLA que prevê cargas combinadas nas empenagens. Neste parágrafo prevê 75% das cargas de manobra aplicadas na empenagem horizontal e 100% das

cargas de manobra aplicadas na empenagem vertical, atuando simultaneamente. Este carregamento e apresentado na figura 30.

Figura 12.23 - Cargas combinadas nas empenagens

As reações da empenagem vertical forma calculadas no item 2.5 da Parte II deste capitulo, sendo:

$$\therefore R_I = -726,08 kgf$$
 e $\therefore R_S = 605,76 kgf$

As reações da empenagem horizontal, para cargas positivas, calculadas no item 1.9.1 devem ser multiplicadas por 0.75, tomando:

$$R_F = -57,62kgf$$
$$R_T = -5,04kgf$$

As reações da empenagem horizontal, para cargas negativas, calculadas no item 1.9.2 devem ser multiplicadas por 0.75, tomando:

$$R_F = -129,97 kgf$$
$$R_T = 67,75 kgf$$

Para o dimensionamento estrutural da fuselagem, devem ser combinadas as cargas positivas na empenagem horizontal com as cargas na empenagem vertical atuando para os dois lados e as cargas negativas na empenagem horizontal também com as cargas na empenagem vertical atuando para os dois lados.

12.9.2.6 Cargas Na Fuselagem Para Analise Estrutural

Sendo o modelo da fuselagem utilizado para a analise estrutural conforme apresentado na Figura 12.24.

Figura 12.24 — Modelo da fuselagem para analise estrutural

12.10 Cargas nos Comandos

As cargas nos sistema de comando serão determinadas em concordância aos parágrafos FAR-PART 23.391 até FAR-PART 23.415.

12.10.1 Cargas no Sistema de Comando do Profundor

As cargas no profundor devem ser investigadas para os casos de carregamento de manobra e rajada. A tabela 2 do apêndice A dos requisitos FAR-PART 23 apresenta as distribuições de carga na empenagem horizontal para ambos os casos. O dimensionamento do profundor e seus sistemas de comando, quanto às cargas aerodinâmicas, será feito em relação às cargas de manobra na empenagem horizontal,

visto que essas são maiores que as cargas devido à rajada. A Figura 12.25 apresenta a distribuição de carga na empenagem horizontal proposta pelo requisito FAR.

Figura 12.25 – Distribuição de carga na empenagem horizontal

O valor da carga no profundor será proporcional à área da distribuição de carga sobre o mesmo e igual à:

$$\mathbf{P}_{\text{prof}} = \mathbf{P}_{\text{EH}} \cdot \frac{\mathbf{c}''}{\mathbf{c}' + \mathbf{c}''}$$

Sendo a carga máxima na empenagem horizontal igual a 162,66 kgf, a relação entre a corda do profundor e a corda da empenagem horizontal igual a 0.3 e a relação entre a corda do estabilizador e a da empenagem horizontal igual a 0.7 tem-se:

$$P_{prof} = 162.66 \cdot \frac{0.3}{0.7 + 0.3} = 48.8$$

Entretanto, o parágrafo FAR-PART 23.395 (a) prevê que o dimensionamento dos sistemas de comando de ser feito com uma carga igual a 125% da carga limite calculada para as superfícies de comando. Assim, a carga para dimensionamento deste sistema será:

$$P_{prof} = 48.8 \cdot 1.25 = 61.0 \ kgf$$

Como a distribuição de carga na empenagem é triangular a aplicação da carga deve ser feita no baricentro desta distribuição, conforme a Figura 12.26.

Figura 12.26 – Aplicação da carga no profundor

Sendo a corda média aerodinâmica da empenagem horizontal igual a 775*mm*, a corda do profundor para efeito de cálculos de cargas será:

O somatório de momentos fornece:

$$\sum M = 0 \Rightarrow 61 \cdot 0.076 = R_1 \cdot 0.15 \Rightarrow R_1 = 31,1 \, kgf$$
$$\therefore R_2 = 31,1 \, kgf$$
$$\sum M = 0 \Rightarrow 31,1 \cdot 0.15 = P_x \cdot 0.532 \Rightarrow F = 8,77 \, kgf$$

Para equilibrar a carga aerodinâmica limite na empenagem horizontal, o piloto estará aplicando então, sobre o manche, uma força de 8,77 kgf. Entretanto o parágrafo FAR-PART 23.397(b) prevê que tal sistema não precisa ser dimensionado para cargas que produzam uma carga nos comando maior que 167 lb (75.5kgf). Assim, calculando as cargas neste sistema de comando a partir de uma carga de 75.5 kgf no manche, tem-se:

$$\sum M = 0 \Rightarrow R_2 \cdot 0.15 = 75.5 \cdot 0.532 \Rightarrow R_2 = 267,77 \ kgf$$
$$\therefore R_2 = R_1 = 267,77 \ kgf$$
$$\sum M = 0 \Rightarrow F \cdot 0.076 = 267,77 \cdot 0.15 \Rightarrow F = 528.49 \ kgf$$

12.10.2 Cargas no Sistema de Comando do Leme de Direção

A carga limite calculada para a empenagem vertical foi de 1521.9 kgf. Sendo a relação entre a corda do leme e a corda da empenagem vertical igual a 0.22, têm-se:

$$P_{leme} = 1521.9 \cdot \frac{0.22}{0.78 + 0.22} = 334,82 \text{ kgf}$$

Em atendimento ao requisito FAR-PART 23.395(a), a carga limite para dimensionamento deste sistema deve ser 125% da carga calculada.

$$P_{leme} = 418.5 \text{ kgf}$$

Figura 12.27 - Aplicação da carga no profundor

Sendo a corda média aerodinâmica da empenagem vertical igual a *1055mm*, a corda do profundor para efeito de cálculos de cargas será:

Afigura 12.28 apresenta um esquema do sistema de comando do leme de direção de forma a se estabelecer as cargas atuantes em cada componente deste mecanismo.

Figura 12.28 - Sistema de comando do leme de direção

Por simples equilíbrio de momentos tem-se que:

 $\sum M = 0 \Rightarrow 418.5 \cdot 0.104 = R_1 \cdot 0.075 \Rightarrow R_1 = 580,32 \ kgf$ $\sum M = 0 \Rightarrow 580,32 \cdot 0.075 = P \cdot 0.255 \Rightarrow F = 170,7 \ kgf$

O parágrafo FAR-PART23 397 (b) determina que esse sistema não precisa ser dimensionado para cargas que produzam uma carga de comando maior 200 lb (90.7 kgf). Assim, calculando as cargas neste sistema de comando a partir de uma carga de 90.7 kgf no pedal, tem-se:

$$\sum M = 0 \Rightarrow R_1 \cdot 0.075 = 90.7 \cdot 0.255 \Rightarrow R_1 = 308.4 kgf$$
$$\sum M = 0 \Rightarrow F \cdot 0.104 = 308.8 \cdot 0.075 \Rightarrow F = 222.7 kgf$$

12.10.3 Cargas no Sistema de Rolamento

A carga no aileron da aeronave deve ser determinada de acordo com o parágrafo JAR-VLA 455. Para se satisfazer as imposições apresentadas neste parágrafo, é permitida a utilização de um método semi-empírico apresentado no apêndice A deste requisito.

A figura A5 do apêndice A dos requisitos JAR-VLA, fornece a carga por unidade de área no aileron como função da carga alar de manobra projetada. Para o presente caso tem-se:

$$n \cdot \frac{W}{S} = 4,9 \cdot \frac{750}{12,96} = 283,56 \frac{kgf}{m^2}$$

O que, através da figura A5 do apêndice A dos requisitos JAR-VLA fornece:

$$\frac{P_{aileron}}{S_{aileron}} = 136,71 \frac{kgf}{m^2}$$

A área do aileron do presente projeto (retirado das três vistas) é igual a 0.274 m². Assim a carga em cada aileron será, já levando em consideração a imposição do parágrafo JAR-VLA 395 (a) (carga de dimensionamento dos sistemas de comando deve ser igual a 125% da carga aerodinâmica limite) será:

$$P_{aileron} = 97,54 \text{ kgf}$$

A figura 12.29 apresenta o perfil para distribuição de carga sobre o aileron apresentado pelo requisito JAR-VLA, bem como baricentro desta distribuição onde se pode concentrar a resultante das forças.

Figura 12.29 - Distribuição de carga no aileron

Sendo a corda média do aileron aproximadamente igual a 0.25m, o ponto de aplicação da resultante aerodinâmica estará a aproximadamente 0.08m da linha de articulação do aileron.

A figura 12.30 apresenta um esquema do sistema de comando de rolamento da presente aeronave, de forma a se estabelecer as cargas sobre cada componente deste mecanismo.

Figura 12.30 - Sistema de comando de rolamento

Por simples equilíbrio de momentos e sabendo que o braço de alavanca dos guinhois nas duas direções é de 0,07 m tem-se que a força que chegará no manche é de 97,54.

$$\sum M_M = 0 \Longrightarrow 97,54.0,06 = P_y \cdot 0,06 \Longrightarrow P_y = 97,54 \text{ kgf}$$

Sabendo que, a distância do ponto de aplicação da força no manche ao ponto de articulação é de 0,03 e a distância do ponto de articulação até a mão do piloto é de 0,5m, tem-se também por equilíbrio de momento:

$$\sum M_{\scriptscriptstyle M} = 0 \Longrightarrow 97,54.0,03 = P_{\scriptscriptstyle m} \cdot 0,5 \Longrightarrow P_{\scriptscriptstyle m} = 5,85 \text{ kgf}$$

Então para equilibrar a carga aerodinâmica limite nos ailerons o piloto deverá exercer uma força no manche igual a 5.85 kgf. Entretanto o parágrafo JAR-VLA 397 (b) determina que tal sistema deve ser dimensionado para uma carga aplicada pelo piloto igual a 30.6 kgf (30 daN). Para satisfazer tal imposição, sem se super dimensionar todo o sistema, prever-se-á a implementação de batentes laterias nos manche da presente aeronave, fazendo com que seja necessário o reforço apenas deste componente para satisfazer a imposição deste requisito.

13 DIMENSIONAMENTO

13.1 Dimensionamento da Longarina Principal da Asa

Será realizado o dimensionamento da longarina principal assumindo-se que somente essa suporta todo o carregamento, ou seja, desprezando-se a contribuição da longarina secundária (que suporta o flap e o aileron) e a contribuição do revestimento.

A maior parte dos cálculos serão realizados com base no manual de projeto da Boeing. Será utilizada entre outros trabalhos a nota de revisão BDM-6320 de Outubro de 1999. Os principais parâmetros geométricos estão apresentados na figura a seguir:

Figura13.1 – Parâmetros geométricos da longarina da asa

A solução vista no corte B-B é descartada em função da dificuldade de fabricação de uma alma de longarina com tais características. A espessura 't' para o presente projeto é de 2mm na raiz e diminui para 1 mm na ponta da asa.

Foram determinadas as margens de segurança para a longarina principal da asa cujas dimensões na raiz são apresentadas na figura abaixo.

Figura 13.2 – Dimensões da longarina da asa

13.1.1 Verificação das Margens de Segurança da Alma contra Flambagem: Aplicabilidade do Método ao Presente Projeto:

O método apresentado no trabalho BDM-6320 é limitado aos seguintes intervalos:

- Razão de aspecto da alma $\binom{l}{hr}$ entre 0,2 e 1,0 Para o presente projeto: $\binom{l}{hr} = 0,93$
- Razão altura-espessura $\binom{h}{t}$ maior que 100 Para o presente projeto: $\binom{h}{t} = 111,7$
- Razão de reforço $\left(\frac{Ast}{l \cdot t}\right)$ maior que 0,25 Para o presente projeto: $\left(\frac{Ast}{l \cdot t}\right) = 0,36$

13.1.2 Determinação da Tensão de Cisalhamento Última da Alma

Sendo a longarina construída em alumínio 7075-T6, pode-se determinar Fs como a seguir:

1. Determine Fs $_{CR}$ para o painel à partir de BDM-6310:

Para o presente projeto tem-se A tensão de cisalhamento crítica de flambagem é

calculada para o caso em que $h_c > 1$; assim $a = h_c = 0,224$ m e $b = l_c = 0,178$ m

A razão b/a fornece Kss = 18,8 (figure 3-2 _ BDM-6310)

Corrigindo Kss para coeficiente de Poison de 0,33 tem-se Kss'= 19,64

Sendo Gs = 26,9 GPa
Rst = 0,76 (figura 3-3 _ BDM-6310)
Rch = 1,05 (figura 3-3 _ BDM-6310)
Krest = 0,83
Tem-se: Fs
$$_{CR}$$
 = 55,7 MPa

2. Determine $\omega \cdot l$, uma medida da flexibilidade da mesa:

$$\omega \cdot l = 0,5 \ l \left[\frac{t}{h} \left(\frac{1}{I_t} + \frac{1}{I_c} \right) \right]^{0,25}$$

onde $It = Ic = 1,91E-07 \text{ m}^4$ h = 0,192 ml = 0,178 m

Assim: $\omega \cdot l = 1,62$

3. Determine Fs utilizando a figura 2-3 (BDM-6320) Sendo Ftu web = 540 MPa Fs/ Ftu web = 0,365 $K^* = 0,71$ Logo Fs = 197,1 MPa

A margem de segurança é determinada a seguir:

Sendo a força cortante na raiz V = 16508 N

Pode-se calcular o fluxo de cisalhamento q = 86043,35 N/m

O fluxo de cisalhamento admissível é determinado à partir de Fs e vale q $_{\text{allow}}$ = 394200 $N\!/m$

Logo MS = 3,58.

13.1.3 Verificação da Máxima Área entre Reforçadores e dos Esforços Combinados

Três requisitos devem ser satisfeitos para a alma:

1. O fluxo de cisalhamento máximo atuante na alma deve ser menor que o fluxo de cisalhamento admissível:

$$f_{S_{\text{max}}} = \frac{V \cdot Q}{I_t} = \frac{16508 \cdot 1,25 \cdot 10^{-5}}{1,32 \cdot 10^{-5}} = 1,57 \cdot 10^{+4} \ N/m$$
$$\frac{F_{SU} \cdot A}{l} = \left(\frac{F_{TU \ web}}{\sqrt{3}}\right) \cdot \frac{A}{l} = 6,24 \cdot 10^{+5} \ N/m$$

Logo, o primeiro requisito foi cumprido.

2. Tensão de cisalhamento atuante nos rebites de união alma-mesas não deve exceder a tensão de cisalhamento admissível:

Seja:

$$f_{S_{net}} = \frac{p}{p-d} \cdot \frac{t}{tp} \cdot F_S$$

Que para o presente projeto vale,

$$f_{S_{net}} = \frac{0,051}{0,051 - 0,003175} \cdot \frac{0,002}{0,002} \cdot 197, 1 = 210,2 MPa$$

e a tensão de cisalhamento admissível vale,

$$F_{SU} = \left(\frac{F_{TU web}}{\sqrt{3}}\right) = 311,8 MPa$$

Logo o segundo requisito foi satisfeito.

- Deve-se verificar por último se as tensões combinadas de tração e cisalhamento dos rebites de união mesa-alma e reforçadores satisfazem a equação iterativa abaixo:
- 4.

$$\left(\frac{f_{s_{\text{net}}}}{F_{su}}\right)^2 + \left(\frac{f_{t_{\text{net}}}}{F_{tu}}\right)^2 = 0.945 \le 1.0$$

Logo, com os três requisitos satisfeitos a distância de 7 polegadas entre reforçadores será adotada.

13.1.4 Seleção do reforçador

13.1.4.1 Passo 1

A partir da razão $\binom{h}{t}$ que vale 111,7 determina-se a área inicial da seção transversal do reforçador (Figura 2-7 _ BDM-6320).

Sendo assim $A_{ST} = 1,28E-0,4 m^2$

Da tabela A3.12 (Bruhn) determina-se um perfil comercial que possua área de seção transversal adequada para a calculada, logo:

PERFIL 'L' DE ABAS IGUAIS => 1" x 1" x 1/8"

13.1.4.2 Passo 2

Deve-se verificar se o momento de inércia do perfil escolhido no passo 1 não fornece um raio de giração tal que $\binom{hr}{\rho} > 80$. Deve-se empregar para isso a figura 2-8 (BDM-6320) para verificação do momento de inércia do reforçador. $I_{ST} = 9,1E-09 \text{ m}^4$. Mostro-se adequado segundo a figura 2-8.

= 5I - 9, 1E - 09 III . Mostro-se adequado segundo a figura

13.1.4.3 Passo 3

Deve-se observar a espessura da aba do reforçador para que a razão $\begin{pmatrix} t_{ST} \\ t \end{pmatrix}$ seja de aproximadamente 1,5.

Para o presente projeto tem-se: $\binom{t_{ST}}{t} = 1,58$

13.1.4.4 Passo 4

Seleção de um novo perfil caso o perfil inicial não tenha atendido aos requisitos e restrições até aqui impostas. Como o 1º perfil escolhido mostro-se satisfatório será mantido no prosseguimento dos cálculos.

13.1.4.5 Passo 5

Determinar a margem de segurança do reforçador contra a falha por crippling. A margem de segurança é determinada segundo a equação a seguir:

$$M.S. = \frac{F_C}{f_{C MAX} \cdot K_{sc}} - 1$$

Onde: F_C = 262 MPa (figura 2.11 BDM-6320)

$$K_{SC} = 1,0$$
 (figura 2.12 _ BDM-6320)
 $f_{CMAX}/f_{C} = 1,09$ (figura 2.13 _ BDM-6320)
 $f_{C}/F_{S} = 1,2$ (figura 2.14 _ BDM-6320)

O que fornece:

$$MS = 1,6 \%$$

13.1.4.6 Passo 6

Determinar a margem de segurança do reforçador contra a falha por flambagem de coluna. A margem de segurança é determinada segundo a equação a seguir:

$$M.S. = \frac{F_{CR}}{f_C \cdot K_e} - 1$$

Onde: $F_C = 400 \text{ MPa}$

$$K_e = 1 + \frac{e}{\rho} = 0,90$$
$$f_C = 237 \text{ MPa}$$

O que fornece:

$$MS = 87,9\%$$

13.1.5 Margens de segurança da longarina contra falha por momento fletor

De posse das cargas determinadas anteriormente, verificaram-se as margens de segurança da asa contra falha por flexão desde sua ponta até a raiz. Deve-se observar

aqui que o dimensionamento é realizado para cargas em vôo, uma vez que essa representa uma condição mais severa que as cargas em solo transmitidas pelo trem-depouso como verificado no relatório de cargas.

O procedimento é muito simples, a formulação consiste basicamente na obtenção da tensão no ponto mais afastado da linha neutra. A equação é apresentada a seguir:

$$\sigma = \frac{M \cdot y}{I}$$

Os resultados são apresentados na tabela a seguir:

[lxx				NES	MS limite
Pos. [m]	L [N]*n	[m^4]	M [N*m]	h/2 [m]	Tensão[Mpa]	limite	(%)
5,25	0,00	3,1E-06	0,0	0,075	0,00	***	***
5,08	62,20	3,3E-06	33,3	0,076	0,76	637,1	63608
4,73	144,94	3,9E-06	213,3	0,079	4,36	111,3	11035
4,38	239,85	4,4E-06	710,5	0,081	13,05	37,2	3616
4,03	343,99	5,0E-06	1533,2	0,084	25,50	19,0	1802
3,68	455,74	5,7E-06	2713,1	0,086	41,07	11,8	1081
3,33	574,02	6,4E-06	4276,3	0,089	59,19	8,2	719
2,98	698,06	8,8E-06	6245,2	0,091	64,67	7,5	650
2,63	827,23	9,4E-06	8639,5	0,093	86,30	5,6	462
2,28	961,02	9,9E-06	11476,9	0,096	110,70	4,4	338
1,93	1098,96	1,1E-05	14773,2	0,098	137,73	3,5	252
1,58	1240,66	1,1E-05	18542,7	0,101	167,24	2,9	190
1,23	1385,72	1,2E-05	22798,1	0,103	199,09	2,4	144
0,88	1533,79	1,3E-05	27551,2	0,106	233,15	2,1	108
0,53	1684,50	1,3E-05	32812,0	0,108	269,29	1,8	80
0,18	1837,50	1,4E-05	38589,9	0,112	302,77	1,6	60

Tabela 13.1 – Falha por momento fletor da longarina da asa

Sendo assim, observa-se que a asa suporta os esforços de flexão e que, como era de se esperar, a região mais crítica encontra-se na raiz da mesma onde a margen de segurança é de 60%.

13.1.6 Margens de segurança da longarina contra falha por cisalhamento (esforço cortante)

Verificaram-se também as margens de segurança da asa contra falha por cisalhamento devido aos esforços cortantes atuantes na mesma. Deve-se observar aqui que o dimensionamento é realizado para cargas em vôo, uma vez que essa representa uma condição mais severa que as cargas em solo transmitidas pelo trem-de-pouso como verificado no relatório de cargas.

O método consistiu em obter-se a tensão à partir dos momentos estático e de inércia, além da espessura da alma e da carga cortante atuante. Deve-se observar que é desconsiderada a contribuição das mesas no cálculo do momento estático, o que significa uma decisão conservativa no que se refere ao dimensionamento. A equação é apresentada a seguir:

$$\tau = \frac{V \cdot Q}{I \cdot t}$$

Os resultados são apresentados na tabela a seguir:

Pos [m]	V[N]	lxx [m^4]	t [m]	Q [m³]	Tal [Mpa]	NFS limite	MS limite
5,25	0	3,1E-06	0,001	3,09E-06	0,00	***	***
5,08	610	3,3E-06	0,001	3,30E-06	0,69	243,1	24213
4,73	1420	3,9E-06	0,001	3,76E-06	1,69	99,0	9800
4,38	2351	4,4E-06	0,001	4,26E-06	2,94	56,9	5590
4,03	3371	5,0E-06	0,001	4,80E-06	4,42	37,8	3681
3,68	4466	5,7E-06	0,001	5,38E-06	6,13	27,3	2626
3,33	5625	6,4E-06	0,002	6,00E-06	8,07	20,7	1971
2,98	6841	8,8E-06	0,002	8,28E-06	12,89	13,0	1196
2,63	8107	9,4E-06	0,002	8,74E-06	15,14	11,0	1004
2,28	9418	9,9E-06	0,002	9,20E-06	17,43	9,6	859
1,93	10770	1,1E-05	0,002	9,68E-06	19,76	8,5	746
1,58	12158	1,1E-05	0,002	1,02E-05	22,12	7,6	655
1,23	13580	1,2E-05	0,002	1,07E-05	24,51	6,8	582
0,88	15031	1,3E-05	0,002	1,12E-05	26,92	6,2	521
0,53	16508	1,3E-05	0,002	1,17E-05	29,34	5,7	470
0,18	18008	1,4E-05	0,002	1,25E-05	31,65	5,3	428

Tabela 13.2 – Falha por cisalhamentor da longarina da asa

Sendo assim, observa-se que a asa suporta os esforços cortantes e que, como era de se esperar, a região mais crítica encontra-se na raiz. Sendo o fator de segurança nessa região de 5,3.

13.1.7 Determinação da distância entre rebites na linha de união mesas-alma

Verificaram-se os fatores de segurança para a distância máxima entre rebites de união mesas-alma. No procedimento de cálculo estipulou-se inicialmente a utilização de rebites com diâmetro de 1/8".

Os cálculos iniciaram-se com a verificação de qual seria a falha inicial na estrutura. Duas eram as opções: esmagamento do rebite ou cisalhamento do mesmo. Constatou-se que a falha inicial é por cisalhamento. Sendo assim obteve-se do cálculo uma carga crítica de:

$$P_s = \sigma_{su} \cdot A_s = 4730 N$$

A seguir determinou-se o fluxo de cisalhamento como descrito na formulação abaixo:

$$q = \frac{V \cdot Q}{I}$$

Após isso, calculou-se a distância máxima entre rebites desde a raiz até a ponta da asa (passo). A formulação é apresentada logo a seguir:

$$p = \frac{P_s}{q}$$

Estabeleceu-se a tensão entre furos, com o objetivo de verificar se a alma suporta os esforços de cisalhamento, e por fim, determinaram-se os fatores de segurança. A formulação é apresentada abaixo:

$$\tau = \frac{q \cdot p}{\left(p - D\right)t}$$

13.2 onde: D é o diâmetro do rebite; D = 1/8"

t é a espessura da alma ; t = 0,002 m (raiz) ; t = 0,001 m (ponta)

Os resultados são apresentados na tabela a seguir:

					t				
Posição	Q [m³]	V [N]	l [m^4]	q [N/m]	[mm]	p [m]	p [in]	Ten[MPa]	NFs
5,25	2,1E-05	0	3,1E-06	0,0E+00	1,1	####	####	####	####
5,08	2,2E-05	610	3,3E-06	4,0E+03	1,1	1,184	46,63	3,5	88,5
4,73	2,4E-05	1420	3,9E-06	8,8E+03	1,2	0,538	21,17	7,3	42,8
4,38	2,6E-05	2351	4,4E-06	1,4E+04	1,3	0,342	13,47	10,8	28,9
4,03	2,8E-05	3371	5,0E-06	1,9E+04	1,4	0,250	9,86	13,9	22,4
3,68	3,0E-05	4466	5,7E-06	2,4E+04	1,5	0,198	7,79	16,7	18,6
3,33	3,3E-05	5625	6,4E-06	2,9E+04	1,5	0,164	6,45	19,2	16,2
2,98	4,1E-05	6841	8,8E-06	3,2E+04	2,0	0,148	5,81	16,4	19,0
2,63	4,3E-05	8107	9,4E-06	3,7E+04	2,0	0,128	5,04	19,0	16,4
2,28	4,4E-05	9418	9,9E-06	4,2E+04	2,0	0,113	4,45	21,6	14,4
1,93	4,6E-05	10770	1,1E-05	4,7E+04	2,0	0,101	3,99	24,1	12,9
1,58	4,7E-05	12158	1,1E-05	5,1E+04	2,0	0,092	3,62	26,7	11,7
1,23	4,9E-05	13580	1,2E-05	5,6E+04	2,0	0,084	3,32	29,2	10,7
0,88	5,0E-05	15031	1,3E-05	6,1E+04	2,0	0,078	3,07	31,6	9,8
0,53	5,2E-05	16508	1,3E-05	6,5E+04	2,0	0,073	2,86	34,0	9,2
0,18	5,4E-05	18008	1,4E-05	6,9E+04	2,0	0,069	2,72	36,0	8,7

Tabela 13.3 – Distância entre os rebites

Com base nos resultados, padronizou-se o passo para duas regiões da asa . Uma distância entre rebites de 2" junto à raiz e uma distância de 6" a partir de uma distância de 3 metros referenciada na linha de simetria da aeronave.

13.3 DIMENSIONAMENTO DA FUSELAGEM ANTERIOR: TRELIÇA

Foram realizadas análises pelo método dos elementos finitos empregando-se para isso o software Ansys 8.0. Sendo a treliça construída em tubos de aço AISI 4130 cujas propriedades são listadas na tabela a seguir :

AÇO AISI 4130							
Tensão de ruptura	1110 MPa	161000 psi					
Tensão de escoamento	951 MPa	138000 psi					
Alongamento	14.7 %	14.7 %					
Módulo de Elasticidade	205 GPa	29700 ksi					
Módulo de Poisson	0.29	0.29					

Tabela 13.4 – Propriedades do aço AISI 4130

Fonte: matweb.com

Os tubos utilizados para a construção da treliça deverão ser de dois tipos:

Abaixo são listados os detalhes das análises realizadas no programa Ansys, com o objetivo de garantir sua repetibilidade:

Elemento: Pipe16

Análise: SEQV (tensões equivalentes Von Misses)

Condições de restrição aplicadas: ALL DOF (todos os graus de libredade).

Os detalhes acerca do Keypoints onde foram aplicadas as condições de contorno podem ser visualizados na figura abaixo.

13.3.1 Análise: Cargas transmitidas pela asa com fator de carga de 4,9 g.

Essa constitui uma das condições mais severas de carregamento da fuselagem, e foi em decorrência dessa condição que tornou-se necessária uma revisão de projeto. Antes a treliça contava com apenas o 1º tubo citado na figura anterior (Ø 19,05). Decidiu-se substituir os tubos destacados na figura anterior , após essa revisão a estrutura passou a apresentar margem de segurança positiva.

Figura 13.4 – Cargas transmitidas pela asa à fuselagem

Resultados : Tensão máxima atuante = 908 Mpa Margem de Segurança = 4 %

13.4 Dimensionamento da Fuselagem Posterior: Cone de Cauda

O dimensionamento do cone de cauda foi realizado para quatro estações distintas como apresentado na figura abaixo:

Figura 13.5 – Cone de cauda

Do relatório de cargas obtiveram-se as contribuições dos seguintes componentes no que se refere aos esforços:

- Bequilha: esforços na direção Z e Y, além de torção do cone de cauda;
- Empenagem vertical (esforços na direção Y e esforços de torção);
- Empenagem Horizontal (esforços na direção Z e eforço de torção).

Todos os 6 tensores do cone de cauda são perfis cantoneira nas dimensões de $\frac{1}{2}$ " x $\frac{1}{2}$ " x $\frac{1}{16}$ " extrudados em alumínio 2024 - T3

13.4.1 Esforços de flexão

Em cada estação determinaram-se as distâncias dos tensores em relação a um centro comum. Foi obtida também a área da seção transversal de cada tensor. De posse das áreas concentradas e suas respectivas distâncias calculou-se o momento de inércia de cada estação em relação ao eixo horizontal (Iyy) e ao eixo vertical (Izz) como apresentado pela equação abaixo:

$$I = \sum A \cdot d^2$$

Determinou-se também a posição da linha neutra em cada estação pela equação a seguir:

$$C.Q. = \frac{\sum A \cdot d}{\sum A}$$

Deve-se adiantar que, em função da simetria da aeronave no plano XZ a linha neutra de todas as estações na direção do eixo Z esteve sempre contida no plano de simetria da aeronave. Já a linha neutra que possui a direção do eixo Y, mostrou-se variável.

Conhecida a linha neutra de cada uma das quatro estações verificou-se qual tensor era mais solicitado quanto aos esforços de flexão. Para a determinação da tensão normal devido ao esforço de flexão empregou-se a formulação a seguir:

$$\sigma = \frac{M \cdot y}{I}$$

Observe que para o cálculo dos esforços de flexão desprezou-se a contribuição do revestimento.

Resultado estação 3:

Tensor mais solicitado:

TENSORES 3 ou 5

Tensao Final [MPa]	251,7
NFS limite	3,3
MS limite (%)	230,78
NFS final	2,1
MS final (%)	105,5

Carregamento responsável pela solicitação:

Empenagem Vertical.

13.4.1.3 Resultado estação 4:

Tensor mais solicitado:

TENSOR 1

Tensao Final [MPa]	101,3
NFS limite	8,2
MS limite (%)	722,16
NFS final	5,1
MS final (%)	410,7

Carregamento responsável pela solicitação:

Empenagem horizontal.

13.4.2 Esforços de cisalhamento

Adotou-se a formulação da tensão cisalhante média:

$$\tau_{_{M\!\acute{E}\!D}}=\!\frac{V}{A}$$

Resultados para todas as seções _ Cortantes: Em função do grande fator de segurança apresentado nos resultados (>10), bastou o emprego da formulação de tensão cisalhante

TION 03-03

média para concluir-se que o cone de cauda resiste bem às solicitações. Não foi necessário considerar o revestimento nos cálculos de tensões cisalhantes.

13.4.3 Esforços de torção

Nos cálculos de esforços de torção, ao contrário do observado nas etapas anteriores é considerado somente o revestimento. Formulação adotada:

$$\tau = \frac{T \cdot \rho}{J}$$

Onde: T = torque interno resultante atuante na seção transversal

 ρ = é a distância do elemento considerado ao eixo da fuselagem

J = momento polar de inércia da seção

Resultados para todas as seções _ Torção: Assim como ocorrido para os esforços cortantes, as pequenas cargas encontradas resultaram em elevados fatores de segurança. A seção 4 foi a que apresentou os menores fatores de segurança. Isso já era esperado visto que o momento polar de inércia dessa seção era o menor dentre todas, ao passo que o momento de torção é constante para todas as estações.

13.5 Dimensionamento do Trem de Pouso

Serão considerados a cargas atuantes máximas das diversas situações de pouso. Para isso será levado para calcula a carga crítica.

Para cálculo da triquilha será considerado as cargas atuantes na aterragem nivelada – trem de pouso tricículo.

De acordo com os resultados obtidos no Relatório de Cargas este seguindo o regulamento FAR-PART 23 quanto a determinação das cargas no trem de pouso da aeronave em projeto e serão utilizadas para o calcular as cargas atuantes no no sistema de trem de pouso da aeronave.

13.5.1 Sistema de Trem de Pouso – Triquilha

Como descrito no item 3.2.1 para aterragem em três pontos tem-se a configuração apresentada na figura 2.1. O coeficiente de atrito foi estimado em 0,25.

Figura 13.6 – Aterragem em três pontos

- (7) Componente vertical no trem do nariz: V_N =796,25kgf
- (8) Componente horizontal no trem do nariz: $\rm H_{\rm N}$ =199,06 kgf

Figura 13.7 – Diagrama de corpo livre do trem de pouso

Decompõem-se as forças aplicadas $H_N e V_N$ nas direções perpendicular (R1) e normal (R2) ao tubo principal do trem de pouso. Com isto têm-se a capacidade para realização dos cálculos considerando a flexão e flambagem do tubo. A partir das reações de apoio podem-se calcular também as fixações da estrutura Trem de pouso-fuselagem.

Obtêm-se as reações de apoio da seguinte forma:

$$R_{1} = H_{N} .\cos(10^{\circ}) - V_{N} .\sin(10^{\circ}) = 57,77 kgf$$
$$R_{2} = V_{N} .\cos(10^{\circ}) + H_{N} .\sin(10^{\circ}) = 818,72 kgf$$

13.5.2 Tensão de Flexão

Aplicando-se a equação de equilíbrio e momento pôde-se determinar as reações Rs e Rp. Assume-se que a componente de carga R2 não produz tensão de flexão somente tensão de flambagem.

Figura 13.7 - (a) 1º Situação: Trem de pouso totalmente estendido (b) 2º Situação: Trem de pouso defletido em 100mm.

Ou seja:

10 Situação:

$$R_p = 193,80 kgf$$

 $R_s = -251,57 kgf$

20 Situação:

$$R_p = 158,47kgf$$
$$R_s = -216,23kgf$$

A seguir pode-se visualizar o as distribuições de momentos no comprimento do trem de pouso.

Figura 13.8 – Momento fletor atuante no trem de pouso

Neste ponto pode-se afirmar que o momento será máximo na posição de apoio Rs sendo este:

10 Situação: $M_{\text{max}} = 31686,85 kgf.mm$

20 Situação: $M_{\text{max}} = 25909,16 kgf.mm$

Conhecendo o momento de inércia em cada seção, esta dividida conforme figura a seguir, pode-se determinar a tensão atuante devido a distribuição de momento fletor:

I1=74,38x10-9m4 I2=17,15x10-9m4

Como a seção é circular, portanto simétrica, pode-se utilizar da seguinte formulação para determinar a tensão devida o momento fletor. Ou seja:

$$\sigma = \frac{M.r_e}{I}$$

Onde: M: Momento fletor atuante; re: raio externo da seção considerada;

I: Momento de Inércia em cada seção.

A seguir, serão apresentados na Tabela 1.1 e Figura 1.2, os resultados obtidos conforme formulação anterior.

			Momento	Momento			
Posição [mm]	Posição [mm]		[kgf.mm]	[kgf.mm]		Tensão [Mpa]	Tensão [Mpa]
Trem	Trem		Trem		Re	Trem	Trem
Estendido	defletido	l [m^4]	Estendido	Trem defletido	[mm]	Estendido	defletido
0,0	0,0	1,715E-08	0,0	0,0	15,88	0,00	0,00
71,2	61,2	1,715E-08	4113,1	3535,4	15,88	37,34	32,10
142,4	122,4	1,715E-08	8226,2	7070,9	15,88	74,68	64,19
213,6	183,6	1,715E-08	12339,3	10606,3	15,88	112,02	96,29
284,8	244,8	1,715E-08	16452,5	14141,7	15,88	149,36	128,38
356,0	306,0	1,715E-08	20565,6	17677,2	15,88	186,70	160,48

Tabela 13.1 - Resultados: Distribuição do Momento Fletor e Tensões Resultantes

427,2	367,2	1,715E-08	24678,7	21212,6	15,88	224,04	192,57
498,4	428,4	1,715E-08	28791,8	24748,0	15,88	261,38	224,67
548,5	448,5	1,715E-08	31686,0	25909,2	15,88	287,66	235,21
548,5	448,5	7,438E-08	31686,0	25909,2	25,40	106,15	86,80
569,6	489,6	7,438E-08	27596,9	19396,2	25,40	92,45	64,98
640,8	550,8	7,438E-08	13798,4	9698,1	25,40	46,23	32,49
712,0	612,0	7,438E-08	0,0	0,0	25,40	0,00	0,00

Momento Fletor Atuante

Figura 13.9 - Distribuição do Momento Fletor e Tensões Resultantes

Foi adotado as seguintes propriedades para os tubos que constituem o sistemas de trem de pouso:

Material do tubo: Aço SAE 4130;

Tensão de ruptura do material: σ_r =620MPa.

A margem de segurança será para as duas situações iguais à:

10 Situação:

Tensão máxima devido ao momento fletor: $\sigma_{máx} = 287,7MPa$

$$MS = \frac{620}{287,7} - 1 = 115\%$$

20 Situação:

Tensão máxima devido ao momento fletor: $\sigma_{máx} = 235,21MPa$

$$MS = \frac{620}{235,21} - 1 = 163\%$$

13.5.2.1 Flambagem

A resultante das forças horizontais e verticais que poderá causar flambagem nos tubos que constituem o sistema do trem de pouso será a carga R2. Ou seja:

$$R_2 = 818,72 kgf$$

O cálculo será realizado considerando o máximo comprimento do tubo, ou seja, quando o mesmo se encontra todo estendido. Adota-se também seção constante no comprimento total, neste caso considera-se o momento de inércia mínimo, para um caso bem conservativo

Adotam-se então as seguintes propriedades para os tubos:

- Material do tubo: Aço SAE 4130;
- Tensão de ruptura do material: $\sigma_r = 620$ MPa.
- Diâmetro Externo da 20 seção: de=31.8mm;
- Espessura da parede do tubo: t=1,59mm;
- Módulo de Elasticidade: E= 200GPa;
- Máximo comprimento do tubo: l=0,235mm+0,246mm=0,481mm.

Com isso pode-se calcular a carga crítica de flambagem.

A condição de apoio utilizada será considerada como barras rotuladas nas extremidades, portanto para este tipo de condição de apoio o valor de c = 1.

Sendo c = 1, têm-se:

$$l_l = \frac{l}{\sqrt{c}} = \frac{0,481}{\sqrt{1}} = l = 0,481m$$

Portanto:

$$P_{CR} = \frac{\pi^2 EI}{l_l^2} = \frac{\pi^2 .200 \times 10^9 .17,15 \times 10^{-9}}{0,481^2} = 146320N = 14915kgf$$

Logo:

$$MS = \frac{14915}{818,72} - 1 = 1721\%$$

13.5.2.2 Tensões nos apoios

Considere a figura a seguir, as reações foram calculadas anteriormente. Necessita-se agora determinar as tensões nos apoios e fixações do trem de pouso. As resultantes R' e R" serão, portanto:

Figura 13.10 – Apoios do trem de pouso

R' = 289,6kgfR'' = 371,2kgf

Figura 13.11 – Dimensões do trem de pouso

$$\sigma = \frac{M.y}{I}$$
$$I = \frac{2.445^{3}}{12} = 146869mm^{4}$$

Será analisado somente a fixação secundária, pois esta é dimensionalmente semelhante a fixação principal. A fixação secundária suporta uma maior carga, isto é R'<R". Será considerado que toda componente R" gerará momento, logo temos:

$$\sigma = \frac{\frac{(371,6.42)}{2}}{14686.9} = 23,64 \text{ kgf} / \text{mm}^2 = 232 \text{ MPa}$$
$$MS = \frac{620}{232} - 1 = 167\%$$

A tensão de compressão no furo da peça será:

$$\sigma_c = \frac{R''}{\phi_{furo}.e} \qquad \therefore e = \frac{R''}{\phi_{furo}.\sigma_c} = \frac{371.6}{8,5.620/9.81} = 0.69mm$$

Foi utilizada uma bucha de bronze para aumentar a margem de segurança da estrutura. Desta forma temos:

$$\sigma_c = \frac{R''}{\phi_{furo} \, l_{bucha}} = \frac{371.6}{8.5.12} = 3.7 kgf \, / \, mm^2$$

Material: Bronze TM-23: $\sigma_r = 14.70 kgf / mm^2$

$$MS = \frac{14,7}{3,7} - 1 = 297,3\%$$

13.6 Dimensionamento do Comando de Aileron

Apresenta-se a seguir o equacionamento para cálculo de flambagem das barras de comando.

Pela Equação de Euler sabe-se que para uma barra carregada somente nas extremidades esta equação torna-se:

Figura 13.12 – Flanbagem da coluna do aileron

A formulação acima é determinada para cada tipo de condição de apoio, desta forma temos:

$$P_{CR} = \frac{\pi^2 EI}{l_l^2}$$
, onde: $l_l = \frac{l}{\sqrt{c}}$

O valor da constante c é visualizado a seguir:

Figura 13.13 – l_f para dimensionamento do aileron

A condição de apoio utilizada nas barras de comandos dos ailerons será considerada como barra rotulada nas extremidades, pois foi utilizado para limite dos comprimentos de tais barras , um tipo de "pêndulo de fixação".

Portanto para este tipo de condição de apoio o valor de c = 1.

Foi adotado as seguintes propriedades para as barras de comandos:

- Material do tubo: Al 2024-T31;
- Diâmetro Externo do tubo: $d_e = 14$ mm;
- Espessura da parede do tubo: *t*=1,59mm;
- Módulo de Elasticidade: *E*= 71GPa;
- Máximo comprimento utilizado de barra: *l*=1,380m.

Com isso pode-se calcular a carga crítica de flambagem. A seguir serão apresentados os cálculos na obtenção desta carga.

Sendo c = 1, têm-se:

$$l_l = \frac{l}{\sqrt{c}} = \frac{l}{\sqrt{1}} = l = 1,380m$$

O momento de inércia da seção é dado por:

$$I = \frac{\pi \cdot (r_e^4 - r_i^4)}{4} = \frac{\pi \cdot \left[\frac{\left(14x10^{-3}/2\right)^4 - \left(14x10^{-3}/2 - 1,59x10^{-3}\right)^4}{4} \right]}{4} = 1,213x10^{-9}m^4$$

Portanto:

$$P_{CR} = \frac{\pi^2 EI}{l_l^2} = \frac{\pi^2 .71 \times 10^9 .1,213 \times 10^{-9}}{1,38^2} = 446,3N = 45,5kgf$$

Conhecendo-se a carga crítica de flambagem do tubo, pode-se conhecer qual carga máxima poderá ser aplicada no manche para realização de alguma manobra utilizando os ailerons. Isto é:

Figura 13.14 – Máxima deflexão do manche

Fazendo o somatório do momento no ponto de articulação do manche para comando do aileron, têm-se:

$$\sum M = F.500 - R.69$$
$$\therefore F = \frac{R.69}{500}$$

Sendo:

R=Pcr=45,5kgf

Logo:

F=6,3kgf

Portanto não se deve exceder uma força de 6,3kgf ao se realizar uma manobra utilizando-se dos comandos de ailerons.

Levando em consideração a norma JAR-VLA 397, que impõe 30daN=30,5kgf de força aplicada pelo piloto, considerando uma aeronave de duplo comando, pode-se determinar qual a dimensões geométricas necessárias para suportar tal carga.

De forma inversa ao cálculo realizado anteriormente pode-se determinara tais geometrias.

Como uma carga F=30,5kgf, determina-se a reação R, ou seja:

$$\sum M = F.500 - R.69$$
$$\therefore R = \frac{F.500}{69} = \frac{30,5.500}{69} = 221 kgf$$

Logo o tubo do comando deverá suportar uma carga maior que 221kgf de carga crítica de flambagem. Assim tem-se:

$$P_{CR} = \frac{\pi^2 EI}{l_l^2} \Longrightarrow 221 kgf = 2168 N = \frac{\pi^2 .71 x 10^9 . I}{1.38^2} \Longrightarrow I = 5.89 x 10^{-9} m^4$$

Desta forma:

$$I = \frac{\pi \cdot (r_e^4 - r_i^4)}{4} = 5,89 \times 10^{-9}$$

Encontra-se como umas das opções de re=20mm e ri=7mm, ou seja a espessura da parede do tubo será portanto de13mm.

Caso contrário deve-se reduzir o comprimento do tubo, isto é, o comprimento da coluna de flambagem.

O maior comprimento para o tubo de comando do aileron será então:

$$P_{CR} = \frac{\pi^2 EI}{l_l^2} \Rightarrow 221 kgf = 2168 N = \frac{\pi^2 .71 x 10^9 .1, 213 x 10^{-9}}{l_l^2} \Rightarrow l_l = 0,626 m = 626 mm$$

Com isto deve-se revisar no projeto tais comprimentos, garantindo assim o respeito as normas aplicáveis.

13.7 Dimensionamento do Suporte Ssa-Fuselagem

Será feito agora o dimensionamento da peça que fixa a asa na fuselagem. Essa peça está apresentada na Figura XX abaixo.

Figura 13.15 – Peça de fixação da asa com a fuselagem

Segundo os cálculos de cargas o momento na raiz da asa é de 32812,05 N/m. E sabendo que:

$$M = F \cdot d$$

Sabendo que a distância é de 0,167 m, como apresentada no desenho, tem-se:

$$F = \frac{M}{d}$$

$$F = \frac{32812,05}{0,167}$$

$$F = 196479,34 N$$

Estimando-se o diâmetro externo como sendo de aproximadamente 34 mm tem-se que a área a qual irá suportar essa força é 0,000828 m². E sabendo que o material dessa peça é o Alumínio 7075 T6, o qual possui uma tenção admissível de 62 ksi ou 427 MPa, tem-se

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{196479,34}{0,000828}$$

$$\sigma = 237 MPa$$
ou
$$\sigma = 34,41 ksi$$

Como a tensão que a peça tem que suportar é muito menor que a tensão admissível do material conclui-se que a peça irá suportar.

14 INSTRUMENTAÇÃO

Irá utilizar no BRATI – 01 os seguintes instrumentos relacionados abaixo, atendendo os requisitos de VFR e IRF.

14.1 Indicador de Velocidade

Modelo: UMA Dimensões: 3-1/8" Operação: 20-160MPH Código: 10-04925 Preço: \$114.95

14.2 Horizonte Artificial

Modelo: SIGMA-TEK ATTITUDE GYRO Dimensões: 3-3/8" x 3-3/8" x 6-3/8" Peso: 1.9 lbs Preço: \$697.00

14.3 Altímetro

Modelo: Falcon Sensitive Altimeters Dimensões: **3-3/8" x 3-3/8" x 4-1/8"** Código: 10-04400 Operação: 0-20,000 ft. Preço: \$185.95
14.4 Turn & Bank

Modelo: Falcon Turn Coordinatior (Eletric) Dimensões: 3-1/8" Operação – 14 e 28 volts Preço: \$306.95

14.5 Giroscópio

Modelo: Sigma Tek Direct gyro-vert Dimensões: 3-1/4" x 3-1/4" x 6-1/2 Peso: 2.6 lbs Preço: \$698.00

14.6 Medidor de Velocidade Vertical

Modelo: UNA Dimensões: 3-1/8" Operação: 0-2000 FPM Preço - \$128.95

14.7 Relógio e Medidor de Temperatura do Ar Externo

Modelo: AEROSPACE LOGIC CT1-F NON CERT Dimensões: 2.45" X 2.45" X 1.6" Peso: 8 oz Operação: 6-40Volt Preço: \$295.00

14.8 Medidor de Combustível

Modelo: AEROSPACE LOGIC FL-100-5 STCD Dimensões: 2-1/4" Operação : 9-33 VDC Preço: \$456.95

14.9 Pressão de Combustível

Modelo: UMA MECH FUEL

Dimensões: 2-1/4" Operação: 0-10PSI Preço: \$98.75

14.10 Pressão e Temperatura do Òleo

Modelo: Dimensões: 3 3/8 X 3 3/8 X 3 ³/₄ Peso: 1 lbs aproximadamente Operação: 28 VDC Preço: \$577.00

14.11 Voltímetro e Amperímetro

Modelo - Volt-Ampere Meter TL-2724

Dimensões: 2-1/4" Preço - \$259.00

14.12 VOR

Modelo - 903ID DVOR Peso – 6 oz Operação – 14 e 28 volts Preço - \$261.95

14.13 Tacômetro

Modelo: RPM and Engine Hours Meter TL-2824 (10-00886)

Dimensões: 2-1/4"

Preço: \$249.00

14.14 Transponder

Modelo: KING SLVR CRWN Código: KT76C

> Dimensões: Operação: 14 V Preço: \$1800.00

14.15 GPS

Modelo: Garmin GPS 400 Panel Mount Código: 11-00098 Preço: \$4797.00

14.16 Tubo de Pitot

Modelo: Falcon Turn Coordinatior (Eletric) Dimensões: 3-1/8" Operação – 14 e 28 volts Preço: \$306.95

14.17 Disposição dos Instrumentos

> Lado esquerdo do painel

> No meio do painel

> Lado direito do painel

> Também do lado direito do painel

Rádio de Comunicação

Rádio de Comunicação

15 NOVOS DADOS

Asa		
Dimensões	Valor	Unidade
Envergadura	10,5	m
Corda na raíz	1,59	m
Corda na ponta	0,99	m
Corda média aerodinâmica	1,31	m
Razão de aspecto	8,5	
Afilamento	0,62	
Enflexamento (c/4)	1	0
Torção geométrica	-2	0
Àrea	12,96	m2
Fuselagem		
Dimensões	Valor	Unidade
Comprimento	7,36	m
Largura máxima da fuselagem	1,06	m
Empenagem Horizontal		
Dimensões	Valor	Unidade
Envergadura		
Corda na raíz	0,98	m
Corda na ponta	0,51	m
Corda média aerodinâmica	0,77	
Razão de aspecto	4,87	
Enflexamento (c/2)	3	0
Àrea	2,62	
Àrea do profundor	0,79	
Empenagem Vertical		
Dimensões	Valor	Unidade
Seh	0,98	m^2
Área do leme	0,34	
Geral		
Dimensões	Valor	Unidade
Dist. das rodas do trem principal	3,2	m
Dist. Do trem principal da bequilha	1,3	m
Dist. Do trem principal da trequilha	5,5	m
Diâmetro da hélice	1,8	m

16 DESENHOS TÉCNICOS

17 REFERÊNCIAS BIBLIOGRÁFICAS

- BARROS, C. P. Uma Metodologia Para o Desenvolvimento de Projeto de Aeronaves Leves Subsônicas. Belo Horizonte: Escola de Engenharia da UFMG, 2001. 310p. (Tese de Doutorado em Engenharia Mecânica).
- II) ABBOTT, I.H.; DOENHOFF, A.E. *Theory of Wing Sections*. New York: Dover Publications Inc, 1958.
- III) PAZMANY, L.; *Light Airplane Design*. San Diego: Pazmany Aircraft Corporation, 1963. 80p.
- IV) ISCOLD, P.H., *Introdução às Cargas nas Aeronaves*. Belo Horizonte: CEA-UFMG, 2001. 178p. (Apostila do Curso de Teoria de Estruturas Aplicada às Aeronaves UFMG).
- V) JACKSON, P. Jane's All The World's Aircraft. Surrey, UK; Janes Information Group Limited, 1976 - 77, 1988 - 89, 1997 - 98.
- VI) ROSKAN, J. Airplane Design: Componet Weight Estimation. Outtowo, Kansas: Roskam Aviation and Engineering Corporation, 1985.
- VII) ROSKAN, J. Airplane Design: Preliminary Sizing of Airplanes. Outtowo, Kansas: Roskam Aviation and Engineering Corporation, 1985.
- VIII) PULLIN, D. Aerodinâmica do Avião Desempenho. Belo Horizonte: Cid McGraw e Miguel Hill, 1979.
- IX) Revista Avião Revue n. 35 Ano 3 de Agosto de 2002 pág. 48 a 51
- X) Revista Aero Magazine n. 112 Ano 10 Pag. 14 a 19

- XI) Revista Aero Magazine n. 104 Ano 9 Pag. 22 a 27
- XII) AirLiners, Maio. 2005. Disponível em: <www.airliners.net>. Acesso em: 12 maio 2005.
- XIII) BRS Parachutes, Maior de 2005. Disponível em: <u>www.brsparachute.com</u>. Acesso em 16 maio 2005.
- XIV) Boing Desing Manual, Outubro de 1999. USA
- XV) Bruhn, E.F.B.S, Analysis and Design of Flight Vehicle Structures, Purdue Univerdity, 1973
- XVI) Hibbler, R.C., Resistência dos Materiais, LTC Editora; Rio de Janeiro, 1997
- XVII) Iscold, P.H.A. de O.; Cálculo de Cargas na Aeronave CEA 309 Mehari, CEA-UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA MECÂNICA

PROJETO BRATI - 01

Professor: Paulo Iscold

Alunos: Débora Louise Esteves Diniz Fabrício Travassos Barbosa Poliana Olívia Soares Dias Rafael Cunha Rogério Amaral de Souza